Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài A: áp dụng công thức: 1 + 2 + 3 + ... + n = n x (n + 1) : 2 tính được 5050
bài B: áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) rồi triệt tiêu gần hết, qui đồng mẫu số tính được B = 99/100
A = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100
= ( 100 + 1 ) x 100 : 2 = 5050
Vậy A = 5050
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Vậy \(B=\frac{99}{100}\)
Học tốt #
a)\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}......\frac{99}{100}\)
\(=\frac{1.2.3.4.....99}{2.3.4.5.6.....100}\)
\(=\frac{1}{100}\)
b) Tương tự như câu a
a) \(\frac{3}{5}+25-\frac{1}{5}=\left(\frac{3}{5}-\frac{1}{5}\right)+25=\frac{2}{5}+25=\frac{2}{5}+\frac{125}{5}=\frac{127}{5}\)
b) \(13\times3\times32,27+67,63\times39=39\times32,27+67,63\times39\)
\(=39\times\left(32,27+67,63\right)\)
\(=39\times99,9=3196,8\)
(Bạn xem lại đề nhé)
c) \(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times....\times\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times.....\times\frac{99}{100}\)
\(=\frac{1\times2\times3\times...\times99}{2\times3\times4\times....\times100}=\frac{1}{100}\)
a, \(\frac{3}{5}+25-\frac{1}{5}=\frac{127}{5}\)
b, \(\text{13 x 3 x 32,27 + 67,63 x 39 =}3896,1\)
............................
thank for watching me do homework
ví dụ
a là 1
b là 2
ta có
1/1 - 1/2 và 1/1x2
= 1/2 và 1/2
khi đó ta thấy 1/2 = 1/2
và 1/1 - 1/2 = 1/1x2
a)\(\frac{5}{6}-\frac{a}{b}+\frac{3}{4}=\frac{2}{3}\)
\(\frac{5}{6}-\frac{a}{b}=\frac{2}{3}-\frac{3}{4}\)
\(\frac{5}{6}-\frac{a}{b}=\frac{8}{12}-\frac{9}{12}\)
Đề câu a hình như sai bạn à .
\(\frac{1}{3}-\frac{1}{2}+\frac{a}{b}=\frac{1}{2}\)
\(\frac{2}{6}-\frac{3}{6}+\frac{a}{b}=\frac{1}{2}\)
Đề b cũng sai luôn .
À, Mình nghiên cứu ra cách giải rồi nè!
a) \(\frac{5}{6}\) + \(\frac{2}{3}\) = \(\frac{a}{b}\) + \(\frac{3}{4}\)
\(\frac{5}{6}\) + \(\frac{4}{6}\) = \(\frac{a}{b}\) + \(\frac{3}{4}\)
\(\frac{9}{6}\) - \(\frac{3}{4}\) = \(\frac{a}{b}\)
\(\frac{a}{b}\) = \(\frac{3}{4}\)
Câu b cũng tương tự vậy đó
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{100}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\times\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\times\left(\dfrac{4}{4}-\dfrac{1}{4}\right)\times...\times\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{98}{99}\times\dfrac{99}{100}\)
\(=\dfrac{1\times2\times3\times...\times98\times99}{2\times3\times4\times...\times99\times100}\)
\(=\dfrac{1}{100}\)
\(\left(1-\dfrac{1}{2}\right)x\left(1-\dfrac{1}{3}\right)x\left(1-\dfrac{1}{4}\right)x\left(1-\dfrac{1}{5}\right)x...x\left(1-\dfrac{1}{99}\right)x\left(1-\dfrac{1}{100}\right)\)
= \(\dfrac{1}{2}x\dfrac{2}{3}x\dfrac{3}{4}x\dfrac{4}{5}x...x\dfrac{98}{99}x\dfrac{99}{100}\) = \(\dfrac{1}{100}\)