K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

9992 = 998001 nha

20 tháng 10 2021

9992=(1000-1).(1000-1)=1000000-1000-1000+1=998001

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

5 tháng 10 2019

Một hình chữ nhật có chu vi gấp 6 lần chiều rộng biết chiều rộng bằng 4 tính diện tích hình chữ nhật các bạn lm từng bước một giúp mk nhé cảm ơn :)))))

18 tháng 7 2019

\(A=4x^2-y^2-2y-1\)

  \(=\left(2x\right)^2-\left(y+1\right)^2\)

  \(=\left(2x+y+1\right)\left(2x-y-1\right)\)

  \(=-197\) 

Vậy....

18 tháng 7 2019

Cảm ơn~~

5 tháng 4 2018

\(A=-4x^2-5y^2+8xy+10y+12\)

\(-A=4x^2+5y^2-8xy-10y-12\)

\(-A=\left(4x^2-8xy+y^2\right)+\left(4y^2-10y+\frac{25}{4}\right)-\frac{73}{4}\)

\(-A=\left(2x-y\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{73}{4}\)

Mà : \(\left(2x-y\right)^2\ge0\forall x;y\)

         \(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)

\(\Rightarrow-A\ge-\frac{73}{4}\)

\(\Leftrightarrow A\le\frac{73}{4}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}2x-y=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{5}{4}\end{cases}}\)

Vậy \(A_{Max}=\frac{73}{4}\Leftrightarrow\left(x;y\right)=\left(\frac{5}{8};\frac{5}{4}\right)\)

18 tháng 12 2018

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

14 tháng 10 2020

a, \(x^3-2x^2+3x-6=x\left(x^2+3\right)-2\left(x^2+3\right)=\left(x-2\right)\left(x^2+3\right)\)

b, \(x^2+2x+1-4y^2=\left(x+1\right)^2-\left(2y\right)^2=\left(x+1-2y\right)\left(x+1+2y\right)\)

14 tháng 10 2020

\(\left(-2x\right)\left(3x+1\right)+\left(x-2\right)\left(2x+1\right)=-6x^2-2x+2x^2+x-4x-2\)

\(=-4x^2-5x-2\)

Sửa 2x + 1 => 3x + 1 có vẻ sẽ ok hơn nhé ! 

16 tháng 12 2018

\(x^3+2x^2+3x=0\)\(\Leftrightarrow x.\frac{x^3+2x^2+3x}{x}=0\)

\(\Leftrightarrow x\left(x^2+2x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+2x+3=0\end{cases}}\)

Ta sẽ c/m \(x^2+2x+3=0\) vô nghiệm.Thật vậy:

\(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)

Từ đó suy ra \(x^2+2x+3=0\) vô nghiệm.

Vậy : x = 0

16 tháng 12 2018

\(\left(x+2\right)\left(2x-1\right)+1=4x^2\)

\(2x^2-x+4x-2+1=4x^2\)

\(\Rightarrow2x^2-3x+1=0\)

\(2x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

ý còn lại tham khảo bài tth