\(\int xcosxdx\) ọi người giúp với ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

\(\int xcosx.dx=\int\left(xcosx+sinx\right)dx+\int\left(-sinx\right)dx\) = \(xsinx+cosx+C\)

12 tháng 11 2016

cảm ơn bạn/ bạn có fb k cho mình xin ạ

1 tháng 4 2017

a) Áp dụng phương pháp tìm nguyên hàm từng phần:

Đặt u= ln(1+x)

dv= xdx

=> ,

Ta có: ∫xln(1+x)dx =

=

b) Cách 1: Tìm nguyên hàm từng phần hai lần:

Đặt u= (x2+2x -1) và dv=exdx

Suy ra du = (2x+2)dx, v = ex

. Khi đó:

∫(x2+2x - 1)exdx = (x2+2x - 1)exdx - ∫(2x+2)exdx

Đặt : u=2x+2; dv=exdx

=> du = 2dx ;v=ex

Khi đó:∫(2x+2)exdx = (2x+2)ex - 2∫exdx = ex(2x+2) – 2ex+C

Vậy

∫(x2+2x+1)exdx = ex(x2-1) + C

Cách 2: HD: Ta tìm ∫(x2-1)exdx. Đặt u = x2-1 và dv=exdx.

Đáp số : ex(x2-1) + C

c) Đáp số:

HD: Đặt u=x ; dv = sin(2x+1)dx

d) Đáp số : (1-x)sinx - cosx +C.

HD: Đặt u = 1 - x ;dv = cosxdx

3 tháng 3 2016

a) Đặt \(u=x^2\)\(dv=2^xdx\). Khi đó \(du=2xdx\)  ; \(v=\int2^xdx=\frac{2^x}{\ln2}\)  và  \(I_1=x^2\frac{2^x}{\ln2}-\frac{2}{\ln2}\int x2^xdx\)

Lại áp dụng phép lấy nguyên hàm từng phần cho tích phân ở vế phải bằng cách đặt :

\(u=x\)  ; \(dv=2^xdx\)   và thu được  \(du=dx\)    ; \(v=\frac{2^x}{\ln2}\)   Do đó

\(I_1=x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{1}{\ln2}\int2^xdx\right]\)

    = \(x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{2^x}{\ln^22}\right]+C\)  = \(\left(x^2-\frac{2}{\ln2}x+\frac{2}{\ln^22}\right)\frac{2^x}{\ln2}+C\)

3 tháng 3 2016

b) Đặt \(u=x^2\)\(dv=e^{3x}dx\)

Khi đó \(du=2xdx\)    ; \(v=\int e^{3x}dx=\frac{1}{3}\int e^{3x}d\left(3x\right)=\frac{1}{3}e^{ex}\)

Do đó:

\(I_2=\frac{x^2}{3}e^{3x}-\frac{1}{3}\int xe^{3x}dx\)  (a)

Lại áp dụng phép lấy nguyên hàm từng phần cho nguyên hàm ở vế phải. Ta đặt \(u=x\)  ; \(dv=e^{3x}dx\)

Khi đó  \(du=dx\)  ; \(v=\int e^{3x}dx=\frac{1}{3}e^{3x}\)  và 

\(\int xe^{ex}dx=\frac{x}{3}e^{3x}-\frac{1}{3}\int e^{3x}dx=\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\)

Thế kết quả thu được vào (a) ta có :

\(I_2=\frac{x^2}{3}e^{3x}-\frac{2}{3}\left(\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\right)+C=\frac{e^{3x}}{27}\left(9x^2-6x+2\right)+C\)

19 tháng 5 2016

\(\int\dfrac{\sin x}{9-\cos^2x}dx=\int\dfrac{\sin x}{(3- \cos x)(3+\cos x)}dx\)

\(=-\int\dfrac{1}{(3- \cos x)(3+\cos x)}d(\cos x)\)

\(=\dfrac{-1}{6}.\int[\dfrac{1}{(3- \cos x)}+\dfrac{1}{(3+ \cos x)}]d(\cos x)\)

\(=\dfrac{1}{6}.\int\dfrac{d(3-\cos x)}{(3- \cos x)}-\dfrac{1}{6}.\int\dfrac{d(3+\cos x)}{(3+ \cos x)}\)

\(=\dfrac{1}{6}.\ln\dfrac{3-\cos x}{3+\cos x}\)

 

22 tháng 3 2016

a) \(I_1=\int\frac{dx}{2\sin x\cos x}=\frac{1}{2}\int\frac{\cos x}{\sin x}.\frac{dx}{\cos^2x}\)

Đặt \(\tan x=t\)

        \(=\frac{1}{2}\int\frac{dt}{t}=\frac{1}{2}\ln\left|t\right|+C=\frac{1}{2}\ln\left|\tan x\right|+C\) 

b) \(I_2=\int\frac{\sin^4x}{\cos^4x}.\frac{1}{\cos^2x}.\frac{dx}{\cos^2x}\) 

Đặt \(t=\tan x\)

         \(=\int t^4\left(1+t^2\right)dt\)

         \(=\int t^4dt+\int t^6dt=\frac{t^5}{5}+\frac{t^7}{7}+C\)

         \(=\frac{\tan^5x}{5}+\frac{\tan^7x}{7}+C\)

c) \(I_3=\int\tan^3xdx\)  đặt \(t=\tan x\) 

        \(=\int\frac{t^3}{1+t^2}dt=\int\left(t-\frac{t}{1+t^2}\right)dt\)

        \(=\frac{t^2}{2}-\frac{1}{2}\ln\left(1+t^2\right)+C\)

       \(=\frac{1}{2}\tan^2x+\ln\left|\cos x\right|+C\)

d) \(\int\frac{dx}{\sin^4x}=\int\frac{1}{\sin^2x}.\frac{1}{\sin^2x}dx=-\int\left(1+\cot^2x\right)d\left(\cot x\right)\)

                                               \(=-\cot x-\frac{1}{3}\cot^3x+C\)

NV
26 tháng 8 2020

8.

\(I=\int sinx.cos2xdx=\int\left(2cos^2x-1\right)sinxdx\)

\(=\int\left(1-2cos^2x\right)d\left(cosx\right)=cosx-\frac{2}{3}cos^3x+C\)

9.

\(I=\int\frac{sin2x}{1+cos^2x}dx=-\int\frac{2\left(-sinx\right).cosx}{1+cos^2x}dx=-\int\frac{d\left(cos^2x\right)}{1+cos^2x}\)

\(=-ln\left|1+cos^2x\right|+C\)

NV
26 tháng 8 2020

6.

\(I=\int cos^3xdx=\int\left(1-sin^2x\right)cosxdx\)

\(=\int\left(1-sin^2x\right)d\left(sinx\right)=sinx-\frac{1}{3}sin^3x+C\)

7.

\(I=\int sin^2x.cos^3xdx=\int sin^2x\left(1-sin^2x\right)cosxdx\)

\(=\int\left(sin^2x-sin^4x\right)d\left(sinx\right)=\frac{1}{3}sin^3x-\frac{1}{5}sin^5x+C\)

18 tháng 1 2016

a) \(\int\frac{1}{x^2-3x+2}dx=\frac{1}{2-1}\int\frac{1}{\left(x-1\right)\left(x-2\right)}dx\)

=\(\int\frac{1}{x-2}dx-\int\frac{1}{x-1}dx=ln\left|x-2\right|-ln\left|x-1\right|=ln\left|\frac{x-2}{x-1}+C\right|\)

 

b) \(\int\frac{1}{4x^2-3x-1}dx=\frac{1}{4}.\frac{1}{\left(1-\frac{1}{4}\right)}\int\frac{1}{\left(x+\frac{1}{4}\right)\left(x-1\right)}dx\)

=\(\frac{1}{3}.\left[\int\frac{1}{x-1}dx-\int\frac{1}{x+\frac{1}{4}}dx\right]\)

=\(\frac{1}{3}\left[ln\left|x-1\right|-ln\left|x+\frac{1}{4}\right|\right]=\frac{1}{3}ln\left|\frac{x-1}{x+\frac{1}{4}}\right|+C\)

=\(\frac{1}{3}ln\left|\frac{4\left(x-1\right)}{4x+1}+C\right|\)

22 tháng 1 2016

Ta có :

\(\frac{3x+2}{x^2+2x-3}=\frac{E\left(2x+2\right)+D}{x^2+2x-3}=\frac{2E+D+2E}{x^2+2x-3}\)

Đồng nhất hệ số hai tử sốta có hệ phương trình 

\(\begin{cases}2E=3\\D+2E=2\end{cases}\) \(\Rightarrow\begin{cases}E=\frac{3}{2}\\D=-1\end{cases}\)

\(\Rightarrow\) \(\frac{3x+2}{x^2+2x-3}=\frac{\frac{3}{2}\left(2x+2\right)}{x^2+2x-3}-\frac{1}{x^2+2x-3}\)

Vậy :

\(\int\frac{3x+2}{x^2+2x-3}dx=\frac{3}{2}\int\frac{d\left(x^2+2x-3\right)}{x^2+2x-3}+\int\frac{1}{x^2+2x-3}dx\)\(=\frac{3}{2}\ln\left|x^2+2x-3\right|+J\left(1\right)\)

Tính :

\(J=\int\frac{1}{x^2+2x-3}dx=\frac{1}{4}\left(\int\frac{1}{x-1}dx-\int\frac{1}{x+3}dx\right)=\frac{1}{4}\ln\left|x-1\right|-\ln\left|x+3\right|=\frac{1}{4}\ln\left|\frac{x-1}{x+3}+C\right|\)

Do đó :  \(\int\frac{3x+2}{x^2+2x-3}dx=\frac{3}{2}\ln\left|x^2+2x-3\right|+\frac{1}{4}\ln\left|\frac{x-1}{x+3}\right|+C\)

 

22 tháng 1 2016

b) Ta có :

\(\frac{2x-3}{x^2+4x+4}=\frac{E\left(2x+4\right)+D}{x^2+4x+4}=\frac{2Ex+D+4E}{x^2+4x+4}\)

Đồng nhất hệ số  hai tử số :

Ta có hệ : \(\Leftrightarrow\)\(\begin{cases}2E=2\\D+4E=-3\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}E=1\\D=-7\end{cases}\)

Suy ra :

\(\frac{2x-3}{x^2+4x+4}=\frac{2x+4}{x^2+4x+4}-\frac{7}{x^2+4x+4}\)

Vậy : \(\int\frac{2x-3}{x^2+4x+4}dx=\int\frac{2x+4}{x^2+4x+4}dx-7\int\frac{1}{\left(x+2\right)^2}dx=\ln\left|x^2+4x+4\right|+\frac{7}{x+2}+C\)