Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 câu 1,3,4,5 giống nhau, mình làm 1 câu và bạn dựa vào đó tự xử lý mấy câu còn lại nhé
1/ \(I=\int sin2x.e^{3x}dx\) \(\Rightarrow\left\{{}\begin{matrix}u=sin2x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2cos2x.dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}\int cos2x.e^{3x}dx=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}I_1\)
Xét \(I_1=\int cos2x.e^{3x}dx\) \(\Rightarrow\left\{{}\begin{matrix}u=cos2x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-2sin2xdx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I_1=\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}\int sin2x.e^{3x}dx=\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}I\)
\(\Rightarrow I=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}\left(\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}I\right)\)
\(\Rightarrow\dfrac{13}{9}I=\dfrac{1}{9}e^{3x}\left(3sin2x-2cos2x\right)\)
\(\Rightarrow I=\dfrac{1}{13}e^{3x}\left(3sin2x-2cos2x\right)+C\)
3/ \(\int e^x\left(\dfrac{1+cos2x}{2}\right)dx=\dfrac{1}{2}\int e^xdx+\dfrac{1}{2}\int cos2x.e^xdx=\dfrac{e^x}{2}+\dfrac{1}{2}I_1\)
\(I_1\) có cách tính y hệt như bài 1, bạn nguyên hàm từng phần 2 lần là xong
4/ Cũng hạ bậc tương tự câu trên và xử lý
5/ \(I=\int e^{-x}\left(\dfrac{cos3x+3cosx}{4}\right)dx=\dfrac{1}{4}\int e^{-x}\left(cos3x+3cosx\right)dx\)
\(\Rightarrow I=\dfrac{1}{4}\int e^{-x}cos3x.dx+\dfrac{3}{4}\int e^{-x}cosx.dx=I_1+I_2\)
Dùng phương pháp tương tự bài 1, lần lượt tính \(I_1\) và \(I_2\) rồi cộng vào
2/\(I=\int\dfrac{x^4}{\left(x^2-1\right)^2}dx=\int\left(1+\dfrac{2x^2-1}{\left(x^2-1\right)^2}\right)dx=\int\left(1+\dfrac{2}{x^2-1}+\dfrac{1}{\left(x^2-1\right)^2}\right)dx\)
\(=\int\left(1+\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{1}{4}\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)^2\right)dx\)
\(=\int\left(1+\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{1}{4}\left(\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{x+1}-\dfrac{1}{x-1}\right)\right)dx\)
\(=\int\left(1+\dfrac{3}{4}\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)+\dfrac{1}{4}\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{4}\dfrac{1}{\left(x-1\right)^2}\right)dx\)
\(=x+\dfrac{3}{4}ln\left|\dfrac{x-1}{x+1}\right|-\dfrac{1}{4\left(x+1\right)}-\dfrac{1}{4\left(x-1\right)}+C\)
\(=x+\dfrac{3}{4}ln\left|\dfrac{x-1}{x+1}\right|-\dfrac{x}{2\left(x^2-1\right)}+C\)
thầy e cx cho câu giống câu 2 kia, e tắc luôn ạ, may mà anh lm r :))
a) Áp dụng đồng nhất thức \(\cos^2x+\sin^2x=1\)
ta có : \(\int\frac{1}{\cos^2x.\sin^2x}dx=\int\frac{\cos^2x+\sin^2x}{\cos^2x.\sin^2x}dx=\int\frac{dx}{\sin^2x}+\int\frac{dx}{\cos^2x}\)
\(=-\cot x+\tan x+C\)
b) Khai triển biểu thức dưới dấu nguyên hàm ta thu được :
\(\int\left(\tan x+\cot x\right)^2dx=\int\left(\tan^2x+2+\cot^2x\right)dx\)
\(=\int\left[\left(\tan^2x+1\right)+\left(\cot^2x+1\right)\right]dx\)
\(=\int\frac{dx}{\cos^2x}+\int\frac{dx}{\sin^2x}\)
\(=\tan x-\cot x+C\)
\(a,\int sin2x.cosxdx=\int\dfrac{1}{2}\left[sin3x+sinx\right]dx=\dfrac{1}{2}\int sin3xdx+\dfrac{1}{2}\int sinxdx=\dfrac{-1}{6}cos3x-\dfrac{1}{2}cosx\)
\(\int\limits^{\frac{\pi}{2}}_0x.\sin^2xdx=\int\limits^{\frac{\pi}{2}}_0x\left(\frac{1-\cos2x}{2}\right)dx=\frac{1}{2}\left[\int\limits^{\frac{\pi}{2}}_0xdx-\int\limits^{\frac{\pi}{2}}_0x.\cos3xdx\right]\)
\(=\frac{1}{2}\left(\frac{1}{2}x^2|^{\frac{\pi}{2}}_0-\frac{1}{2}\int\limits^{\frac{\pi}{2}}_0x.d\left(\sin2x\right)\right)\)
\(=\frac{1}{2}\left[\frac{\pi^2}{8}-\frac{1}{2}\left(x.\sin2x\right)|^{\frac{\pi}{2}}_0-\int\limits^{\frac{\pi}{2}}_0\sin2xdx\right]\)
\(=\frac{1}{2}\left[\frac{\pi^2}{8}-\frac{1}{2}\left(0+\frac{1}{2}\cos2x|^{\frac{\pi}{2}}_0\right)\right]=\frac{\pi^2+8}{16}\)
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)
\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)
\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)
Vậy:
\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)
\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)
Cách này hơi dài chút, nhưng nếu nghĩ ra cách hay hơn mình sẽ đề xuất nhe!
\(=\int\sin^5x.\left(2\sin x\cos x\right)^3.2xdx=16\int x.\sin^8x\cos^3xdx\)
\(\left\{{}\begin{matrix}u=x\\dv=\sin^8x.\cos^3xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\int\sin^8x.\cos^3xdx\end{matrix}\right.\)
\(I_1=\int\sin^8x\cos^3xdx=\int\sin^8x.\cos^2x.\cos xdx=\int\sin^8x.\left(1-\sin^2x\right)\cos xdx\)
\(t=\sin x\Rightarrow dt=\cos xdx\Rightarrow\int\sin^8x\left(1-\sin^2x\right)\cos xdx=\int(t^8-t^{10})dt=\dfrac{1}{9}t^9-\dfrac{1}{11}t^{11}=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\)
\(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\end{matrix}\right.\)
\(\Rightarrow\dfrac{I}{16}=x.\left(\dfrac{1}{9}\sin^9x-11\sin^{11}x\right)-\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx\)
\(I_2=\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx=\dfrac{1}{9}\int\sin^9xdx-\dfrac{1}{11}\int\sin^{11}xdx\)
À thế này là xong rồi còn gì :) Bạn tự làm nốt nhé