
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{100}\left(1+2+...+100\right)\)
\(=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{100}\cdot\frac{100.101}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)
\(=\frac{1}{2}\left(2+3+...+101\right)=\frac{1}{2}\cdot\frac{100.103}{2}=25.103=2575\)

M = \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}\)
M = 1 - (\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\))
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\) = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)= \(1-\frac{1}{100}\)
M > 1 - (1 - \(\frac{1}{100}\)) =\(\frac{1}{100}\) (đpcm)

\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+....+\frac{100}{2^{100}}\)
\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+....+\frac{100}{2^{99}}\)
\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)
\(A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)+\frac{100}{2^{100}}\)\(\)
\(=1+\frac{3}{2^2}+\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)+\frac{100}{2^{100}}\)
\(=1+\frac{3}{2^2}+\frac{1}{2^2}-\frac{1}{2^{99}}+\frac{100}{2^{100}}\)
\(=1+\frac{4}{2^2}-\frac{2}{2^{100}}+\frac{100}{2^{100}}\)
\(=2-\frac{98}{2^{100}}=\frac{2^{101}-98}{2^{100}}\)
Lm thế nào vậy
câu trả lời là sớt mạng