Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=(1-1/1+2).(1-1/1+2+3)....(1-1/1+2+3+4+...+2011)
=[1-1/(2+1).2:2].[1-1/(3+1).3:2].....[1-1/(2011+1).2011:2]
=(1-2/2.3).(1-2/3.4)...(1-2/2011.2012)
=4/2.3.10/3.4....4046130/2011.2012
=1.4/2.3 .2.5/3.4 ....2010.2013/2011.2012
=1.2....2010/2.3...2011 .4.5....2013/3.4....2012
=1/2011.2013/3
=671/2011
=(-1/2) : (-2/3) :( -3/4) :...: (-49/50)
= -1/2 . (-3/2) . (-4/3) . ... . (-50/49)
= -1/2.(-1/2) . (-50)
= - 1/100
\(A = {1\over2}-{3\over4}+{5\over6}-{7\over12}={6\over12}-{9\over12}+{10\over12}-{7\over12}\)\(={0\over12}=0\)
Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)
\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)
\(=\frac{1}{2014}.\frac{2015}{2}\)
\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2
=>\(A< \frac{-1}{2}\)hay A<B
Mình chưa học lớp 7
Mình mới học lớp 5 thôi
Xin lỗi nha
to cung vay