Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\) . Chứng minh rằng : \(a=b=c\)
Giúp với mk cần gấp
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(a^2+b^2+c^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left(ab+ba+ca\right)=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=3\left(ab+bc+ca\right)-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}}\)
Suy ra \(a=b=c\) ( đpcm )
Vậy \(a=b=c\)
Chúc bạn học tốt ~
\(a^2+b^2+c^2=3.\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2+2.\left(ab+ba+ca\right)=3.\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}}\)
\(\Rightarrow a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^7+x^5+1\)
\(=x^7-x+x^5-x^2+x^2+x+1\)
\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
b) \(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:
\(A\left(x\right)=x^3-30x^2-31x+1\)
\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)
\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)
\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)
\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)
+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:
\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)
\(A\left(x\right)=0.992+1\)
\(A\left(x\right)=0+1\)
\(A\left(x\right)=1.\)
Vậy giá trị của biểu thức \(A\left(x\right)\) là \(1\) tại \(x=31.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{x+3}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x\left(x+1\right)}\)
\(=\dfrac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x\left(x-1\right)}\)
b: \(=\dfrac{24y^5}{7x^2}\cdot\dfrac{-21x}{12y^3}=2y^2\cdot\dfrac{-3}{x}=\dfrac{-6y^2}{x}\)
c: \(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x-1\right)\left(x+1\right)}=\dfrac{-1}{2\left(x+1\right)}\)
d: \(=\dfrac{7x+2}{3\left(2x-y\right)}\cdot\dfrac{6x\left(2x-y\right)}{2\left(7x+2\right)}=x\)
\(\left(a+b+c\right)^2\)
\(\Rightarrow\left[\left(a+b\right)+c\right]^2\)
\(\Rightarrow\left(a+b\right)^2+2c\left(a+b\right)+c^2\)
\(\Rightarrow a^2+2ab+b^2+2ca+2bc+c^2\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\)
\(\left(a-b-c\right)^2\)
\(\Rightarrow\left[\left(a-b\right)-c\right]^2\)
\(\Rightarrow\left(a-b\right)^2-2c\left(a-b\right)+c^2\)
\(\Rightarrow a^2-2ab+b^2-2ca+2bc+c^2\)
\(\Rightarrow a^2+b^2+c^2-2ab+2bc-2ca\)
ta có (a+b+c)^2 = (a+b+c).(a+b+c) =a^2+ab+ac+ab+b^2+bc+ac+bc+c^2 = a^2+b^2+c^2+2ab+2ac+2bc
và (a-b-c)^2 = (a-b-c)(a-b-c) = a^2-ab-ac-(ab-b^2-bc)-(ac-cb-c^2) =a^2-ab-ac-ab+b^2+bc-ac+cb+c^2=a^2 -2ab-2ac+bc+b^2+c^2