\(\left(6.\left(26\right)^{32}\right):\left(2.\left(29\right)^{20}\right)\)=

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

1,0614....... mà trên olympic lại nói đáp số là 2523

20 tháng 11 2016

Câu 1:

\(\frac{5^4.18^4}{125.9^5.16}\) = \(\frac{5^4.\left(2.9\right)^4}{5^3.9^5.2^4}\) = \(\frac{5^4.2^4.9^4}{5^3.9^5.2^4}\) = \(\frac{5}{9}\)

Câu 2:

\(\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\) = \(\frac{5^{32}.\left(4.5\right)^{43}}{\left(-2.4\right)^{29}.\left(5^3\right)^{25}}\) = \(\frac{5^{32}.4^{43}.5^{43}}{\left(-2\right)^{29}.4^{29}.5^{75}}\) = \(\frac{4^{14}.5^{43}}{\left(-2\right)^{29}.5^{43}}\)

=\(\frac{4^{14}}{\left(-2\right)^{29}}\) = = \(\frac{\left[-2.\left(-2\right)\right]^{14}}{\left(-2\right)^{29}}\) = \(\frac{\left(-2\right)^{14}.\left(-2\right)^{14}}{\left(-2\right)^{29}}\) = \(\frac{\left(-2\right)^{14}}{\left(-2\right)^{15}}\) = \(\frac{-1}{2}\)

 

20 tháng 11 2016

_ Giúp với mình đang cần gấp ạ khocroikhocroi

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Ta có thể viết dạng của $f(x)$ như sau:

\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)

Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$

Giả sử \(g(x)=mx^3+nx^2+px\)

\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)

Giải hệ trên thu được \(m=0,n=0,p=10\)

Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)

Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)

\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)

22 tháng 8 2017
bài làm
A=1.2.3+2.3.4+3.4.5+...+98.99.100
4A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4
4A=1.2.3.(4-0)+2.3.4.(5-1)+...+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-...-97.98.99.100+98.99.100.101
4A=98.99.100.101
4A=97990200
A=979902004979902004
A=24497550
22 tháng 8 2017

a, Vào câu hỏi tương tự nhé

b, Vì \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\Rightarrow\left|x+3\right|+\left|x+1\right|\ge0\Rightarrow3x\ge0\Rightarrow x\ge0}\)

=> x+3+x+1=3x

=> 2x+4=3x

=>x=4

c, \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)

Có \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)

=>\(\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)

=> \(2005\ge4-x+10-x+x+990+x+1000+\left|x+101\right|\)

=> \(2005\ge\left|x+101\right|+2004\)

=> \(\left|x+101\right|\le1\)

=> \(x+101\in\left\{-1;0;1\right\}\Rightarrow x\in\left\{-102;-101;-100\right\}\)

d, tương tự b

14 tháng 9 2017

 a= -1

b= (4)^12

c=1

14 tháng 9 2017

banj ơi viết rõ ra giùm mình với

a: \(\left(\dfrac{5}{6}\right)^6\cdot\left(\dfrac{6}{5}\right)^6\cdot\left(\dfrac{6}{5}\right)^2=\left(\dfrac{5}{6}\cdot\dfrac{6}{5}\right)^6\cdot\dfrac{36}{25}=\dfrac{36}{25}\)

b: \(=-\left(\dfrac{13}{8}\right)^3\cdot\left(\dfrac{32}{13}\right)^3\cdot\dfrac{32}{13}\)

\(=-\left(\dfrac{13}{8}\cdot\dfrac{32}{13}\right)^3\cdot\dfrac{32}{13}=-4^3\cdot\dfrac{32}{13}=\dfrac{-2048}{13}\)

c: \(=\left(0.1\right)^7\cdot10^{13}=\left(0.1\cdot10\right)^7\cdot10^6=10^6\)