\(\left(-3\right)^3+\left(-3\right)^2-\frac{1}{3^7}\cdot81\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

\(3^2\times\frac{1}{243}\times81^2\times\frac{1}{3^3}\)

\(=3^2\times\frac{1}{3^5}\times\left(3^4\right)^2\times\frac{1}{3^3}\)

\(=\left(3^2\times3^8\right)\times\left(\frac{1}{3^5}\times\frac{1}{3^3}\right)\)

\(=3^{10}\times\frac{1}{3^8}\)

\(=3^2\)

\(=9\)

\(\left(4\times2^5\right)\div\left(2^3\times\frac{1}{6}\right)\)

\(=\left(2^2\times2^5\right)\div\left(2^3\times\frac{1}{2\times3}\right)\)

\(=2^7\div2^2\times3\)

\(=2^5\times3\)

\(=96\)

19 tháng 4 2020

\(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}\)

\(=3^2.\frac{1}{3^5}.\left(3^4\right)^2.\frac{1}{3^3}\)

\(=\left(3^2.3^8\right).\left(\frac{1}{3^5}.\frac{1}{3^3}\right)\)

\(=3^{10}.3^{-8}\)

\(=3^2=9\)

\(\left(4.2^5\right):\left(2^3.\frac{1}{6}\right)\)

\(=2^7:2^2.3\)

\(=2^5.3\)

\(=96\)

29 tháng 5 2019

a) \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)

\(\left(-\frac{3}{4}+\frac{2}{5}+\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)

\(0:\frac{3}{7}\)

\(0\)

29 tháng 5 2019

b) \(\frac{2}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}:\left(\frac{1}{36}-\frac{5}{12}\right)\)

\(\frac{1}{4}:\frac{1}{6}+\frac{7}{8}:\frac{-7}{18}\)

=\(\frac{1}{4}.6+\frac{7}{8}.\frac{-18}{7}\)

\(\frac{3}{2}-\frac{3}{4}\)

\(\frac{3}{4}\)

9 tháng 7 2021

1. 

a.\(\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

b. \(\left(\frac{1}{2}\right)^3=\frac{1}{8}\)

c. \(\left(\frac{-3}{5}\right)^5=\frac{-243}{3125}\)

d. \(\left(\frac{-1}{5}\right)^2=\frac{1}{25}\)

e. \(\left(\frac{-1}{6}\right)^3=\frac{-1}{216}\)

10 tháng 7 2021

Trả lời:

Bài 1: 

a, \(\left(\frac{1}{2}\right)^4=\frac{1^4}{2^4}=\frac{1}{16}\)

b, \(\left(\frac{1}{2}\right)^3=\frac{1^3}{2^3}=\frac{1}{8}\)

c, \(\left(\frac{-3}{5}\right)^2=\frac{\left(-3\right)^2}{5^2}=\frac{9}{25}\)

d, \(\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)

e, \(\left(\frac{-1}{6}\right)^3=\frac{\left(-1\right)^3}{6^3}=\frac{-1}{216}\)

Bài 2:

a, \(\left(\frac{3}{2}\right)^2.\left(\frac{4}{3}\right)^2=\frac{9}{4}.\frac{16}{9}=4\)

b, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)

c, \(\left(-\frac{1}{2}\right)^2.\left(\frac{2}{5}\right)^2=\frac{1}{4}.\frac{4}{25}=\frac{1}{25}\)

d, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)

e, \(\left(-5\right)^3.\frac{1}{5}=-125.\frac{1}{5}=-25\)

f, \(\left(\frac{2}{9}\right)^5.\left(-\frac{27}{4}\right)^5=\frac{2^5}{9^5}.\frac{\left(-27\right)^5}{4^5}=\frac{2^5.\left(-27\right)^5}{9^5.4^5}=\frac{2^5.\left[\left(-3\right)^3\right]^5}{\left(3^2\right)^5.\left(2^2\right)^5}=-\frac{2^5.3^{15}}{3^{10}.2^{10}}=\frac{3^5}{2^5}\)

15 tháng 7 2017

a) \(\left(\frac{-3}{2}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)

\(\left(\frac{-3}{2}+\frac{2}{5}+\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)

\(\frac{-3}{4}:\frac{3}{7}\)

\(\frac{-7}{4}\)

b) \(\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}:\left(\frac{1}{36}-\frac{5}{12}\right)\)

\(=\frac{7}{8}:\frac{1}{6}+\frac{7}{8}:\left(\frac{-7}{18}\right)\)

\(=\frac{7}{8}.6+\frac{7}{8}.\left(\frac{-18}{7}\right)\)

\(=\frac{7}{8}.\left(6+\frac{-18}{7}\right)\)

\(=\frac{7}{8}.\frac{24}{7}\)

\(=3\)

30 tháng 4 2019

\(\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

\(=\left(\frac{9}{24}+-\frac{18}{24}+\frac{14}{24}\right):\frac{5}{6}+\frac{1}{2}\)

\(=\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)

\(=\frac{5}{24}.\frac{6}{5}+\frac{1}{2}\)

\(=\frac{1}{4}+\frac{1}{2}\)

\(=\frac{1}{4}+\frac{2}{4}\)

\(=\frac{3}{4}\)

30 tháng 4 2019

\(\frac{1}{2}+\frac{3}{4}-\left(\frac{3}{4}-\frac{4}{5}\right)\)

\(=\frac{1}{2}+\frac{3}{4}-\left(\frac{15}{20}-\frac{16}{20}\right)\)

\(=\frac{1}{2}+\frac{3}{4}-\frac{-1}{20}\)

\(=\frac{10}{20}+\frac{15}{20}-\frac{-1}{20}\)

\(=\frac{25}{20}-\frac{-1}{20}\)

\(=\frac{26}{20}\)

\(=\frac{13}{10}\)