Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\)Đặt \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37\cdot38\cdot39}\)
\(B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38\cdot38}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}\)
\(\Rightarrow B=\frac{\left(\frac{1}{1.2}-\frac{1}{38.39}\right)}{2}=\frac{185}{741}\)
1. Ta có : Dùng phân số \(\frac{84}{71}\)làm phân số trung gian ta được : \(\frac{84}{81}>\frac{73}{71}\)
2. Ta có : \(\left[\frac{3}{8}\right]^5=\left[\frac{3}{2^3}\right]^5=\frac{243}{2^{15}};\left[\frac{5}{243}\right]^3=\left[\frac{5}{3^5}\right]^3=\frac{125}{3^{15}}\)
Chọn phân số \(\frac{243}{3^{15}}\)làm phân số trung gian để so sánh ta được : \(\frac{243}{2^{15}}>\frac{125}{3^{15}}\)
Vậy : \(\left[\frac{3}{8}\right]^5>\left[\frac{5}{243}\right]^3\)
a) \(\left(56.27+56.35\right):62\)
\(=56.\left(27+35\right):62\)
\(=56.62:62\)
\(=56\)
b) \(3\frac{2}{7}.12\frac{1}{2}-3\frac{2}{7}.5\frac{1}{2}+1\frac{1}{2}:\frac{3}{4}\)
\(=3\frac{2}{7}.\left(12\frac{1}{2}-5\frac{1}{2}\right)+\frac{3}{2}.\frac{4}{3}\)
\(=\frac{23}{7}.7+2\)
\(=23+2\)
\(=25\)
c) \(\frac{16.17-5}{16.16+11}\)
\(=\frac{16.\left(16+1\right)-5}{16.16+11}\)
\(=\frac{16.16+16-5}{16.16+11}\)
\(=\frac{16.16+11}{16.16+11}\)
\(=1\)
đặt biểu thức đó là X
ta có :
\(3X=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3X-X=1-\frac{1}{729}\)
\(\Rightarrow X=\frac{728}{729}.\frac{1}{2}=\frac{364}{729}\)
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
Đặt biểu thức là \(A\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2015}}\)
\(3A=3\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2015}}\right)\)
\(3A=3+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2016}}\)
\(2A=3A-A=\left(3+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2016}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2015}}\right)\)
\(2A=2+\frac{1}{3}+\frac{1}{3^{2016}}\)
\(A=\left(2+\frac{1}{3}+\frac{1}{3^{2016}}\right):2\)
\(A=\frac{1}{2}\left(2+\frac{1}{3}+\frac{1}{3^{2016}}\right)\)
\(A=1+\frac{1}{6}+\frac{1}{3^{2016}.2}\)
\(A=\frac{7}{6}+\frac{1}{3^{2016}.2}\)
\(a)\) \(427-98=329\)
\(b)\) \(2\cdot19\cdot15+3\cdot43\cdot10+62\cdot80\)
\(=\left(2\cdot15\right)\cdot19+\left(3\cdot10\right)\cdot43+62\cdot80\)
\(=30\cdot19+30\cdot43+62\cdot80\)
\(=30\cdot\left(19+43\right)+62\cdot80\)
\(=30\cdot62+62\cdot80\)
\(=62\cdot\left(30+80\right)\)
\(=62\cdot110=6820\)
\(c)\) Đặt \(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)
\(\Rightarrow2M=1-\frac{1}{3^6}\)
\(\Rightarrow M=\frac{728}{2\cdot729}=\frac{364}{729}\)
Vậy \(M=\frac{364}{729}\)
\(=3^2.\frac{1}{3^5}.3^8.\frac{1}{3^3}\)
\(=9\)