Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+1\right)^2=81\)
\(\left(x+1\right)^2=9^2\) Hoặc \(\left(x+1\right)^2=\left(-9\right)^2\)
\(\left(x+1\right)=9\) \(x+1=-9\)
\(x=8\) \(x=-10\)
b,\(\left(x+5\right)^{^{ }3}=-64\)
\(\left(x+5\right)^3=\left(-4\right)^3\)
\(x+5=-4\)
=> \(x=-9\)
c,\(\left(2x-3\right)^2=9\)
=>\(\left(2x-3\right)^2=3^2\)Hoặc \(\left(2x-3\right)^2=\left(-3\right)^2\)
\(2x-3=3\) \(2x-3=-3\)
\(2x=6\) \(2x=0\)
=> \(\hept{\begin{cases}x=3\\x=0\end{cases}}\)
d, \(\left(4x+1\right)^3=27\)
\(\left(4x+1\right)^{^{ }3}=3^3\)
\(4x+1=3\)
\(4x=2\)
\(x=\frac{1}{2}\)
\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{8^6}{4}=\frac{\left(2^3\right)^6}{2^2}=\frac{2^{18}}{2^2}=2^{16}\)
\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{4^{15}+4^{10}}{4^6+4^{11}}=\frac{4^{10}.4^5+4^{10}}{4^6+4^6.4^5}=\frac{4^{10}.\left(4^5+1\right)}{4^6.\left(4^5+1\right)}=\frac{4^{10}}{4^6}=4^4=256\)
phần D trên mk làm sai xin lỗi nha
a) \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\Leftrightarrow\frac{3}{4}x=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\times\frac{4}{3}\Leftrightarrow x=\frac{2}{3}\)
b)\(1\frac{3}{4}x+1\frac{1}{2}=-\frac{4}{5}\Leftrightarrow\frac{7}{4}x+\frac{3}{2}=-\frac{4}{5}\Leftrightarrow\frac{7}{4}x=-\frac{23}{10}\)
\(\Leftrightarrow x=-\frac{23}{10}\times\frac{4}{7}\Leftrightarrow x=-\frac{46}{35}\)
c)\(\frac{3}{4}x+\frac{2}{5}x=1,2\Leftrightarrow x\left(\frac{3}{4}+\frac{2}{5}\right)=1,2\Leftrightarrow\frac{23}{20}x=1,2\)
\(\Leftrightarrow x=1,2\times\frac{20}{23}\Leftrightarrow x=\frac{24}{23}\)
d)\(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\Leftrightarrow\frac{1}{7x}=\frac{3}{14}-\frac{3}{7}\Leftrightarrow\frac{1}{7x}=-\frac{3}{14}\Leftrightarrow14=-3\times7x\)
\(\Leftrightarrow-21x=14\Leftrightarrow x=-\frac{2}{3}\)
e) \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}+1\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{11}{20}\\x=\frac{21}{20}\end{matrix}\right.\)
a, \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\\ \Rightarrow\frac{3}{4}x=\frac{1}{2}\\ \Rightarrow x=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)
b, \(1\frac{3}{4}x+1\frac{1}{2}=\frac{-4}{5}\\ \frac{7}{4}x+\frac{3}{2}=\frac{-4}{5}\\ \Rightarrow\frac{7}{4}x=\frac{-23}{10}\\ \Rightarrow x=\frac{-46}{35}\)
Vậy \(x=\frac{-46}{35}\)
c, \(\frac{3}{4}x+\frac{2}{5}x=1,2\\ x\left(\frac{3}{4}+\frac{2}{5}\right)=\frac{6}{5}\\ x\cdot\frac{23}{20}=\frac{6}{5}\\ \Rightarrow x=\frac{24}{23}\)
Vậy \(x=\frac{24}{23}\)
d, \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\\ \Rightarrow\frac{1}{7}:x=\frac{-3}{14}\\ \Rightarrow x=\frac{-2}{3}\)
Vậy \(x=\frac{-2}{3}\)
e, \(\frac{-3}{4}-\left|\frac{4}{5}-x\right|=-1\\ \Rightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\\ \Rightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=\frac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{11}{20}\\x=\frac{21}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{11}{20};\frac{21}{20}\right\}\)
\(\text{a,}\frac{2}{13}.\frac{-5}{3}+\frac{11}{13}.\frac{-5}{3}=-\frac{5}{3}\left(\frac{2}{13}+\frac{11}{13}\right)\)
\(=\frac{-5}{3}.\frac{13}{13}\)
\(=-\frac{5}{3}\)
\(\text{b,}\left(-\frac{1}{3}\right)^2+\left(-\frac{1}{3}\right)^3.27+\left(\frac{-2017}{2018}\right)^0=\frac{1}{9}-\frac{1}{27}.27+1\)
\(=\frac{1}{9}-1+1\)
\(=\frac{1}{9}\)
\(\text{c,}1,2-\sqrt{\frac{1}{4}}:1\frac{1}{20}+\left|\frac{3}{4}-1,25\right|-\left(\frac{-3}{2}\right)^2=\frac{6}{5}-\frac{1}{2}:\frac{21}{20}+\left|\frac{3}{4}-\frac{5}{4}\right|-\frac{9}{4}\)
\(=\frac{6}{5}-\frac{10}{21}+\frac{1}{2}-\frac{9}{4}\)
\(=\frac{-431}{420}\)
A = \(\frac{5}{4}.\left(5-\frac{4}{3}\right).\frac{1}{11}\)
A = \(\frac{5}{44}\left(5-\frac{4}{3}\right)\)
A = \(\frac{25}{44}-\frac{5}{33}\)
A = \(\frac{25.3}{4.11.3}-\frac{5.4}{3.11.4}\)
A = \(\frac{75}{132}-\frac{20}{132}\)
A = \(\frac{55}{132}\)
B = \(\frac{3}{4}:\left(-12\right).\left(-\frac{2}{3}\right)\)
B = \(\frac{-1}{16}.\left(-\frac{2}{3}\right)\)
B = \(\frac{1}{24}\)
C = \(\frac{5}{4}:\left(-15\right).\left(-\frac{2}{5}\right)\)
C = \(\frac{-1}{12}.\left(-\frac{2}{5}\right)\)
C = \(\frac{1}{30}\)
D = \(\left(-3\right).\left(\frac{2}{3}-\frac{5}{4}\right):\left(-7\right)\)
D = \(\frac{3}{7}.\left(\frac{8}{12}-\frac{15}{12}\right)\)
D = \(\frac{3}{7}.\left(-\frac{7}{12}\right)\)
D = \(\frac{-3}{12}\)
D = \(\frac{-1}{4}\)
a) -(251 x3 + 281) + 3x 251- (1-281) b) \(-\left(\frac{3}{54}+\frac{3}{4}\right)-\left(\frac{-3}{4}+\frac{2}{5}\right)\)
=-251x3 - 281+3 x 251- 1+ 281 =\(\frac{-1}{18}-\frac{3}{4}+\frac{3}{4}-\frac{2}{5}\)
=[(-251 x 3)+ (3 x 251)]+(281-281) -1 = (\(\frac{3}{4}-\frac{3}{4}\))-(\(\frac{2}{5}+\frac{1}{18}\))
=0+ 0-1 =0 -41/ 90
=\(-\frac{41}{90}\)
= -1