Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a)\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^5.5^5}{100^5}=\dfrac{100^5.3125}{100^5}=3125\)
2.
a)A có 36 sô hạng , chia A thành 18 nhóm , mỗi nhóm có 2 số hạng .
Ta có : A = \(\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{35}+3^{36}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{35}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{35}.4\)
\(A=4.\left(3+3^3+...+3^{35}\right)\)
Vậy A chia hết cho 4 .
b)Chia A thành 13 nhóm mỗi nhóm có 3 số hạng
Ta có : \(A=\left(3+3^2+3^3\right)+...+\left(3^{34}+3^{35}+3^{36}\right)\)
\(A=3.\left(1+3+9\right)+...+3^{34}.\left(1+3+9\right)\)
A=\(3.13+...+3^{34}.13\)
A= \(13.\left(3+..+3^{34}\right)\)
Vậy A chia hết cho 13
c) Tương tự như câu a và câu b
a. \(\frac{20^5.5^{10}}{100^5}\)= \(\frac{20^5.5^{10}}{20^5.5^5}\)= \(5^5\)=\(3125\)
b. \(\frac{0,9^5}{0,3^6}\)= \(\frac{0,9^5}{0,3^5.0,3}\)= \(\left(\frac{0,9}{0,3}\right).\frac{1}{0,3}\)= \(243.\frac{1}{0,3}\)= \(810\)
c.\(\frac{6^3+3.6^2+3^3}{-13}=\frac{\left(3.2\right)^3+3.\left(3.2\right)^{^2}+3^3}{-13}=\frac{3^3.2^3+3.3^2.2^2+3^3}{-13}\)\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=3^3.\left(-1\right)=-27\)
a,
\(\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{4^5}{2^{10}}=\dfrac{\left(2^2\right)^5}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)
b,
\(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2\cdot3\right)^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{243}{0,2}=\dfrac{243}{\dfrac{1}{5}}=243\cdot5=1215\)
c,
\(\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^6\cdot2\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
d,
\(\dfrac{6^3+3\cdot6^2+3^3}{-13}=\dfrac{\left(2\cdot3\right)^3+3\cdot\left(2\cdot3\right)^2+3^3}{-13}=\dfrac{2^3\cdot3^3+3\cdot2^2\cdot3^2+3^3}{-13}=\dfrac{2^3\cdot3^3+2^2\cdot3^3+3^3}{-13}\dfrac{3^3\left(2^3+2^2+1\right)}{-13}=\dfrac{3^3\cdot13}{-13}=-3^3=-27\)
a, 205.510/1005
=205.55.55/1005
=1005.55/1005
=55
=3125
b, (0,9)5/(0,3)6
=(0,3.3)5/0,36
=0,55.35/0,36
=35/0,3
=810
c, 63+3.62+33/-13
=(2.3)3+3.(3.2)2+33/-13
=23.33+3.32.22+33/-13
=33.23+33.22+33/-13
=33(23+22+1)/-13
=27.13/-13
=-27
d, 46.95+69.120/84.312-611
=(22)6.(32)5+(2.3)9.3.23.5/(23)4.312-(2.3)11
=212.310+29.39.3.23.5/212.312-211.311
=212.310+212.310.5/211.311.2.3-211.311
=212.310.(1+5)/211.311(6-1)
=212.310.6/211.311.5
=2.6/3.5
=12/15
=4/5
a) \(\dfrac{4^2.4^3}{(2^2)^5}=\dfrac{4^2.4^3}{4^5}=\dfrac{4^3}{4^3}=1\)
b) = 1215
c) = \(\dfrac{3}{16}\)
d) = (-27)
a: \(=\dfrac{3^3\left(2^3+2^2+1\right)}{-13}=-3^3=-27\)
b: \(=\left(\dfrac{12}{12}+\dfrac{8}{12}-\dfrac{3}{12}\right)\cdot\left(\dfrac{16}{20}-\dfrac{15}{20}\right)^2\)
\(=\dfrac{17}{12}\cdot\left(\dfrac{1}{20}\right)^2=\dfrac{17}{12\cdot400}=\dfrac{17}{4800}\)
A) \(\dfrac{4^5.4^2}{16^4}=\dfrac{4^7}{\left(2^4\right)^4}=\dfrac{2^{14}}{2^{16}}=\dfrac{1}{4}\)
b)\(\dfrac{2^8.9^4}{6^6.8^3}=\dfrac{2^8.\left(3^2\right)^4}{2^6.3^6.\left(2^3\right)^3}=\dfrac{2^8.3^8}{2^{15}.3^6}=\dfrac{9}{128}\)
c) \(\dfrac{6^3+3.6^2+3^3}{-13}=\dfrac{2^3.3^3+3.2^2.3^2+3^3}{-13}=\dfrac{2^3.3^3+3^3.2^2+3^3}{-13}=\dfrac{3^3.\left(2^3+2^2+1\right)}{-13}=\dfrac{3^3.13}{-13}=-9\)
a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}\)
\(=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)
\(=1+\left(-1\right)\)
\(=0\)
b) \(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(20.5\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
c) \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{12}.\left(2^{18}+2^8\right)}{2^{12}.\left(1+2^{10}\right)}=\frac{2^{18}+2^8}{1+2^{10}}=256\)
b:\(=\dfrac{3^3\cdot2^3+3\cdot2^2\cdot3^2+3^3}{-13}=\dfrac{3^3\left(2^3+2^2+1\right)}{-13}=-3^3=-27\)
a: \(=\dfrac{5^5\cdot4^5\cdot5^{10}}{10^{20}}=\dfrac{5^{15}\cdot2^{10}}{5^{20}\cdot2^{20}}=\dfrac{1}{5^5\cdot2^{10}}\)
b) \(\dfrac{6^3+3.6^2+3^3}{-13}=\dfrac{2^3.3^3+3.3^2.2^2+3^3}{-13}=\dfrac{3^3\left(2^3+2^2+1\right)}{-13}\)
\(=\dfrac{3^3.\left(8+4+1\right)}{-13}=\dfrac{3^3.13}{-13}=\dfrac{27}{-1}=-27\)
a)\(\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^{10}}{20^5.5^5}=\dfrac{5^5}{1}=3125\)