Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 42 , Có \(m=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)
\(\Rightarrow m^3=4+\sqrt{80}-\sqrt{80}+4-3m\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80-4}\right)}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{80-16}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{64}\)
\(\Leftrightarrow m^3=8-12m\)
\(\Leftrightarrow m^3+12m-8=0\)
Vì vậy m là nghiệm của pt \(x^3+12x-8=0\)
Bài 44, c, \(D=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
\(\Rightarrow D^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}+3D\sqrt[3]{\left(2+10\sqrt{\frac{1}{27}}\right)\left(2-10\sqrt{\frac{1}{27}}\right)}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{4-\frac{100}{27}}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{\frac{8}{27}}\)
\(\Leftrightarrow D^3=4+2D\)
\(\Leftrightarrow D^3-2D-4=0\)
\(\Leftrightarrow D^3-4D+2D-4=0\)
\(\Leftrightarrow D\left(D^2-4\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow D\left(D-2\right)\left(D+2\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[D\left(D+2\right)+2\right]=0\)
\(\Leftrightarrow\left(D-2\right)\left(D^2+2D+2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[\left(D+1\right)^2+1\right]=0\)
Vì [....] > 0 nên D - 2 = 0 <=> D = 2
Ý d làm tương tự nhá
ta có hệ pt
<=>\(\hept{\begin{cases}x^3-3x-2=y-2\\y^3-3y-2=z-2\\z^3-3z-2=2-x\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)^2=y-2\\\left(y-2\right)\left(y+1\right)^2=z-2\\\left(z-2\right)\left(z+1\right)^2=2-x\end{cases}}}\)
nhân từng vế của 3 pt, ta có
\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=-\left(x-2\right)\left(y-2\right)\left(z-2\right)\)
<=>\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+1\right]=0\)
<=> x=2 hoặc y=2 hoặc z=2
đến đây bạn tự thay vào và giai tiếp nhé
Ap dung bdt AM-GM cho 2 so ko am A,B ta co
\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)
VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)
=>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)
Tu (2),(3) => DPCM
Đây không phải toán lớp 1 đâu bạn
Tớ không biết vì tớ mới lớp 5
K mk nha
*Mio*
Tự đăng bài rồi tự làm luôn à bn .
Đây ko pk là Toán lớp nhá
Học tôt nhé bn
# MissyGirl #
Vãi cả "Toán Lớp 1"
đây đích thực có phải lớp 1 ko ak?
chắc bn đây phải cấp 2 r