Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A-B=\sqrt{2009}-\sqrt{2007}+\sqrt{2010}-\sqrt{2008}+\sqrt{2011}-\sqrt{2015}\)
\(=\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}\)
Ta có \(\left\{{}\begin{matrix}\sqrt{2009}+\sqrt{2007}< \sqrt{2011}+\sqrt{2015}\\\sqrt{2010}+\sqrt{2008}< \sqrt{2011}+\sqrt{2015}\end{matrix}\right.\)
\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}>\frac{2}{\sqrt{2011}+\sqrt{2015}}+\frac{2}{\sqrt{2011}+\sqrt{2015}}=\frac{4}{\sqrt{2011}+\sqrt{2015}}\)
\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}>0\)
\(\Rightarrow A-B>0\Rightarrow A>B\)
Ta có
\(\hept{\begin{cases}\sqrt{2008}+\sqrt{2005}< \sqrt{2015}+\sqrt{2009}\left(1\right)\\\sqrt{2010}+\sqrt{2007}< \sqrt{2015}+\sqrt{2009}\left(2\right)\end{cases}}\)
\(\Rightarrow\frac{1}{\sqrt{2008}+\sqrt{2005}}+\frac{1}{\sqrt{2010}+\sqrt{2007}}>\frac{2}{\sqrt{2015}+\sqrt{2009}}\)
\(\Leftrightarrow\frac{\sqrt{2008}-\sqrt{2005}}{3}+\frac{\sqrt{2010}-\sqrt{2007}}{3}>\frac{\sqrt{2015}-\sqrt{2009}}{3}\)
\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\sqrt{2010}>\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
Câu a:
Có dạng tổng quát:\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{x+1}}=\frac{1}{\sqrt{\left(k+1\right)k}\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{\left(k+1\right)k}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k-1}}\)
Áp dụng kết quả trên suy ra câu a
Bài 2:
\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{2005}}{-4}\)
\(=\frac{\sqrt{2005}-1}{4}\)