K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

(Không biết là dấu // của bạn là gì có phải | giá trị tuyệt đối?)

1, Không có giá trị lớn nhấn vì số mũ dương. Giá trị nhỏ nhất là 2019. x=1; y=2

2, Không có giá trị lớn nhất), Giá trị nhỏ nhất tại: (vì giá trị tuyệt đối luôn dương)

https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=min(%7Cx%2B3%7C%2B%7Cx-y%2B4%7C-10)

3, C <= 2000 vì (giá trị tuyệt đối luôn dương mà đằng trước dấu giá trị tuyệt đối là - nên luôn âm)
=> 

4, vì số mũ dương mà ta lại có 2 ẩn trong đó một ẩn luôn dương và một ẩn luôn âm nên không có giá trị lớn nhất và nhỏ nhất
 

9 tháng 7 2019

1, Ta có: (x - 1)2000 \(\ge\)\(\forall\)x

|y - 2|2000 \(\ge\)\(\forall\)y

=> (x - 1)2000 + |y - 2|2000 + 2019 \(\ge\)2019 \(\forall\)x, y

hay A \(\ge\)2019 \(\forall\)x,y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy Amin = 2019 tại  x = 1 và y = 2

2) Ta có: |x + 3| \(\ge\)\(\forall\)x

|x - y + 4| \(\ge\) 0 \(\forall\)x, y

=> |x + 3| + |x - y + 4| - 10 \(\ge\)-10  \(\forall\)x,y

hay B \(\ge\)-10 \(\forall\)x,y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+3=0\\x-y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\x-y=-4\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

vậy Bmin = -10 tại x = -3  và y = 1

23 tháng 5 2020

Bổ sung vào câu a

=> A ≥ 1929 ....

23 tháng 5 2020

2.

GTLN của A là 1929 khi x=26 và y=-5

3.

GTNN của B là 1 khi x=-1

28 tháng 10 2019

a,  1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020​ + (-2) ≥ (-2) => A ≥ -2

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)

Vậy GTNN A = -2 khi x = 2019 và y = 1

2, Ta có: |x - 3| = |3 - x|

Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1

=> C ≥ 1 - 5 => C ≥ -4

Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0

+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)

+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)

Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3

b,

1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9

Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5

Vậy GTLN B = 9 khi x = 5 hoặc x = -5

2, Đk: x ≠ 5

 \(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)

Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6

=> \(D=1+1=2\)

Vậy GTLN của D = 2 khi x = 6

30 tháng 5 2016

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

30 tháng 5 2016

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)

26 tháng 11 2016

Lam giup minh voi

Bài 2: 

a: \(\left|x\right|+2013>=2013\)

=>A<=2012

Dấu '=' xảy ra khi x=0

b: |x|+10>=10

=>B<=1

Dấu '=' xảy ra khi x=0

8 tháng 7 2019

\(a,A=\left(x+2\right)^2+37\)

\(A_{min}=37\Leftrightarrow\left(x+2\right)^2=0\Rightarrow x+2=0\Leftrightarrow x=-2\)

\(b,B=2\left(x-3\right)^2-30\)

\(B_{min}=-30\Leftrightarrow2\left(x-3\right)^2=0\Rightarrow x-3=0\Leftrightarrow x=3\)

\(e,E=-\left(x+2\right)^2+37\)

\(E_{max}=37\Leftrightarrow-\left(x+2\right)^2=0\Rightarrow x+2=0\Leftrightarrow x=-2\)