Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$
$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$
$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$
$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$
$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:
$(x-y-z)^2=(y-z)^2=(z-3)^2=0$
$\Rightarrow z=3; y=3; x=6$
b)
$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$
$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$
$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$
$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$
$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)
$\Leftrightarrow y=z=-3; x=4$
\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)
x^2+2xy+y^2+y^2-2yz+z^2+y^2+4y+4+6-2x=0
(x+y)^2+(y-z)^2+(y+2)^2+2*(3-x)=0
y+2=0=>y=-2
y-z=0=>z=-2
x+y=0=>x=2
<=>(x2+2xy+y2)+(y2-2yz+z2)+(y2+6y+9)-(2x+2y)+1=0
<=>[(x+y)2-2(x+y)+1]+(y-z)2+(y+3)2=0
<=>(x+y-1)2+(y-z)2+(y+3)2=0
Vì \(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y-1\right)^2+\left(y-z\right)^2+\left(y+3\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}x+y-1=0\\y-z=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=1\\y-z=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-3\\y=-3\end{cases}}}\)
Vậy x=4,y=z=-3
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0
<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0
<=>(x+y+z)2+(x+5)2+(y+3)2=0
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)
2, A=2x2+4y2+4xy+2x+4y+9
=(x2+4xy+4y2)+(2x+4y)+x2+9
=[(x+2y)2+2(x+2y)+1]+x2+8
=(x+2y+1)2+x2+8
Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)
\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)
Dấu "=" xảy ra khi x=0,y=-1/2
Vậy Amin = 8 khi x=0,y=-1/2
Bài 1:
Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Vì 3 vế trên đều dương ,nên ta có
\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)
Vậy ...........................................................................................................................
Bài 1:
a)
\(A=x^2+y^2-xy-3y+2016=(x^2-xy+\frac{y^2}{4})+(\frac{3y^2}{4}-3y+3)+2013\)
\(=(x-\frac{y}{2})^2+3(\frac{y}{2}-1)^2+2013\)
\(\geq 2013\)
Vậy GTNN của $A$ là $2013$. Giá trị này đạt được khi \(\left\{\begin{matrix} x-\frac{y}{2}=0\\ \frac{y}{2}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\end{matrix}\right.\)
b)
\(B=2x^2+5y^2+4xy-6+5x-9\)
\(=5(y^2+\frac{4}{5}xy+\frac{4}{25}x^2)+\frac{6}{5}x^2+5x-15\)
\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x^2+\frac{25}{6}x+\frac{25^2}{12^2})-\frac{485}{24}\)
\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x+\frac{25}{12})^2-\frac{485}{24}\geq \frac{-485}{24}\)
Vậy GTNN của $B$ là $\frac{-485}{24}$
Giá trị này đạt được khi \(\left\{\begin{matrix} y+\frac{2}{5}x=0\\ x+\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{25}{12}\\ y=\frac{5}{6}\end{matrix}\right.\)
c)
\(C=x^2+xy+y^2-3x-3y+2018\)
\(=\frac{4x^2+4xy+4y^2-12x-12y+8072}{4}=\frac{(4x^2+4xy+y^2)+3y^2-12x-12y+8072}{4}\)
\(=\frac{(2x+y)^2-6(2x+y)+3y^2-6y+8072}{4}\)
\(=\frac{(2x+y)^2-6(2x+y)+9+3(y^2-2y+1)+8060}{4}=\frac{(2x+y-3)^2+3(y-1)^2+8060}{4}\)
\(\geq \frac{8060}{4}=2015\)
Vậy $C_{\min}=2015$. Giá trị đạt được khi \(\left\{\begin{matrix} 2x+y-3=0\\ y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Bài 2:
a)
\(-A=x^2+4y^2-2x+4y-5=(x^2-2x+1)+(4y^2+4y+1)-7\)
\(=(x-1)^2+(2y+1)^2-7\geq -7\)
\(\Rightarrow A\leq 7\)
Vậy GTLN của $A$ là $7$.
Giá trị này đạt được khi \(\left\{\begin{matrix} x-1=0\\ 2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{-1}{2}\end{matrix}\right.\)
b)
ĐKĐB \(\Leftrightarrow B+2x^2+10y^2-6xy-4x+3y-2=0\)
\(\Leftrightarrow 2x^2-2x(3y+2)+(10y^2+3y-2+B)=0\)
Coi đây là PT bậc 2 ẩn $x$. Vì dấu "=" tồn tại nên PT luôn có nghiệm
\(\Rightarrow \Delta'=(3y+2)^2-2(10y^2+3y-2+B)\geq 0\)
\(\Leftrightarrow B\leq \frac{-11y^2+6y+8}{2}=\frac{\frac{97}{11}-11(y-\frac{3}{11})^2}{2}\leq \frac{97}{22}\)
Vậy $B_{\max}=\frac{97}{22}$
a) \(A=9x^2-6x+3\)
\(A=\left(3x\right)^2-2.3x+1+2\)
\(A=\left(3x-1\right)^2+2\)
Vì \(\left(3x-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(3x-1\right)^2+2\ge2\) với mọi x
\(\Rightarrow Amin=2\Leftrightarrow3x-1=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
Vậy giá trị nhỏ nhất của biểu thức là 2 khi x = 1/3
b) \(B=x^2-3x\)
\(B=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\)
Vì \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\) với mọi x
\(\Rightarrow Bmin=-\dfrac{9}{4}\Leftrightarrow x-\dfrac{3}{2}=0\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy giá trị nhỏ nhất của biểu thức là -9/4 khi x = 3/2
c) \(C=x^2+8x+10\)
\(C=x^2+2.x.4+16-6\)
\(C=\left(x+4\right)^2-6\)
Vì \(\left(x+4\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+4\right)^2-6\ge-6\) với mọi x
\(\Rightarrow Cmin=-6\Leftrightarrow x+4=0\)
\(\Rightarrow x=-4\)
Vậy giá trị nhỏ nhất của biểu thức là -6 khi x = -4
d) \(D=x^2-2x+15+y^2+3y\)
\(D=x^2-2x+1+y^2+2.y.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+14\)
\(D=\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\)
Vì \(\left(x-1\right)^2\ge0\) với mọi x
\(\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi x,y
\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\ge\dfrac{47}{4}\) với mọi x,y
\(\Rightarrow Dmin=\dfrac{47}{4}\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy giá trị của biểu thức là 47/4 khi x = 1 và y = -3/2
e) \(E=2x^2+4xy+8x+5y^2-4y-100\)
\(E=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)
\(E=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)
Vì \(\left(x+2y\right)^2\ge0\) với mọi x,y
\(\left(x+4\right)^2\ge0\) với mọi x
\(\left(y-2\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2\ge0\) với mọi x,y
\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\) với mọi x,y
\(\Rightarrow Emin=-120\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\x+4=0\\y-2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)
Vậy giá trị nhỏ nhất của biểu thức là -120 khi x = -4 ; y = 2
f) \(F=x^2-6xy+26+10y^2-10y\)
\(F=x^2-6xy+9y^2+y^2-10y+25+1\)
\(F=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+1\)
\(F=\left(x-3y\right)^2+\left(y-5\right)^2+1\)
Vì \(\left(x-3y\right)^2\ge0\) với mọi x,y
\(\left(y-5\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2\ge0\) với mọi x,y
\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2+1\ge1\) với mọi x,y
\(\Rightarrow Fmin=1\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y-5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\Rightarrow x=15\\y=5\end{matrix}\right.\)
Vậy giá trị của biểu thức là 1 khi x = 15 và y = 5
A=(x2+2x+1)+3(y2+2.y.2/3+4/9)+z2+77/9
=(x+1)2+3(y+2/3)2+z2+77/9\(\ge\)77/9
=>MinA=77/9 khi x=-1;y=-2/3;z=0
Chúc bạn học giỏi !