Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
a, \(A=x^2-y^2-4x\)
\(=\left(x^2-y^2\right)-4x\)
\(=\left(x+y\right)\left(x-y\right)-4x\)
\(=2\left(x-y\right)-2.2x\)
\(=2\left(x-y-2x\right)\)
\(=2\left(-x-y\right)\)
\(=2\left[-\left(x+y\right)\right]\)
\(=-2\left(x+y\right)\)
\(=-2.2=-4\)
Vậy \(A=-4\)
b, \(B=x^2+y^2+2xy-4x-4y-3\)
\(=\left(x^2+2xy+y^2\right)-\left(4x+4y\right)-3\)
\(=\left(x+y\right)^2-4\left(x+y\right)-3\)
\(=4^2-4.4-3\)
\(=-3\)
Vậy \(B=-3\)
c, Phần này hình như đề bài sai, bạn xem lại đề hộ mk cái nhé ;)
A =(x+y)(x-y) -4x = 2(x-y) -4x = 2x -2y - 4x = - 2(x+y) = -4
.............
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
a) \(P=-x^2+13x+2012\)
\(\Leftrightarrow P=-x^2+2.x.\dfrac{13}{2}-\left(\dfrac{13}{2}\right)^2+2054,25\)
\(\Leftrightarrow P=-\left[x^2-2.x.\dfrac{13}{2}+\left(\dfrac{13}{2}\right)^2\right]+2054,25\)
\(\Leftrightarrow P=-\left(x-\dfrac{13}{2}\right)^2+2054,25\)
Vậy GTLN của \(P=2054,25\) khi \(x=\dfrac{13}{2}\)
b) \(A=x^2-2x+2\)
\(\Leftrightarrow A=x^2-2x+1+1\)
\(\Leftrightarrow A=\left(x-1\right)^2+1\)
Vậy GTNN của \(A=1\) khi \(x=1\)
1
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,Mình chưa làm được.
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
d,\(4x-8y\)
\(=4\left(x-2y\right)\)
e,\(x^2+2xy+y^2-16\)
\(=\left(x+y\right)^2-4^2\)
\(=\left(x+y-4\right)\left(x+y+4\right)\)
f,\(3x^2+5x-3xy-5y\)
\(=\left(3x^2-3xy\right)+\left(5x-5y\right)\)
\(=3x\left(x-y\right)+5\left(x-y\right)\)
\(=\left(3x+5\right)\left(x-y\right)\)
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)