K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

A = 8x - 2x2 + 5

A = -2x2 - 8x + 5

-A = 2x2 + 8x - 5

-2A = 4x2 + 16x - 10

-2A = (2x+4)2 - 26

A = -(2x+4)2/2 + 13

GTLL của A = 13 <=> 2x+4 = 0 => x = -2

ok kb vs mik nha

25 tháng 8 2020

Đề bài mình viết thiếu là CM biểu thức sau không phụ thuộc vào x ( nghĩa là kết quả phải ra số tự nhiên không có x ) 

25 tháng 8 2020

\(A=\left(2x+1\right)\left(x-1\right)-2x\left(x+2\right)-5\left(-x+3\right)+4\)

\(=2x^2-2x+x-1-2x^2-4x+5x-15+4\)

\(=-12\left(đpcm\right)\)

5 tháng 4 2019

\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)

\(\Leftrightarrow Px^2-2P=2x-1\)

\(\Leftrightarrow Px^2-2x-2P+1=0\)

*Nếu P = 0 thì ....

*Nếu P khác 0 thì pt trên là bậc 2

\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)

Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)

Nên Pmin = -1 

Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn

5 tháng 4 2019

denta ak bạn 

18 tháng 2 2020

đề cứ sai sai

16 tháng 4 2018

\(B=2-\left(2x^2+y^2+2xy-4x-2y\right)\)

\(B=2-\left[\left(x^2+y^2+2xy-2x-2y+1\right)+\left(x^2-2x+1\right)\right]\)

\(B=4-\left(x-1\right)^2-\left(x+y-1\right)^2\le0\)

GTLN B =4 khi x= 1 ; y =0

\(C=\sqrt{3}-\left(16x^2-8x\right)=\sqrt{3}+1-\left(4x-1\right)^2\le\sqrt{3}+1\)

ki x =1/4

7 tháng 12 2016

Tất nhiên là được 

7 tháng 12 2016

Ta có: \(A=\frac{2x^2-16x+33}{x^2-8x+17}=\frac{\left(2x^2-16x+34\right)-1}{x^2-8x+17}\)

\(=2-\frac{1}{x^2-8x+17}\)

Ta thấy rằng A bé nhất khi x2 - 8x + 17 bé nhất

x2 - 8x + 17 = (x2 - 8x + 16) + 1 = (x - 4)2 + 1\(\ge1\)

=>  x2 - 8x + 17 bé nhất = 1 khi x = 4

Vậy A bé nhất bằng 2 - 1 = 1 khi x = 4

6 tháng 3 2016

GTLN = 17/8  tại x = 3/4

Chuẩn không cần chỉnh (ai tích mình mình tích lại)

6 tháng 3 2016

-(2x2-3x-1)=\(-2\left(x^2-\frac{3}{2}x-1\right)\)

=\(-2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{25}{16}\right)=-2\left(x-\frac{3}{4}\right)+\frac{25}{3}\)

vật gtln là 25/3 khi x=3/4

9 tháng 8 2017

Xem lại biểu thức K

9 tháng 8 2017

biểu thức T lm kiểu gì vậy bạn

14 tháng 12 2017

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

14 tháng 12 2017

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1