K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 giờ trước (16:25)

A = -x^2 - 6x + 1

= -(x^2 + 6x + 9) + 10

= -(x + 3)^2 + 10 ≤ 10

GTLN của A là 10 khi x = -3.

8 giờ trước (18:50)

Ta có: \(A=-x^2-6x+1\)

\(=-\left(x^2+6x-1\right)\)

\(=-\left(x^2+6x+9-10\right)\)

\(=-\left(x+3\right)^2+10\le10\forall x\)

Dấu '=' xảy ra khi x+3=0

=>x=-3

13 tháng 7 2019

\(A=-x^2+x+1\)

\(\Leftrightarrow A=-\left(x^2-x-1\right)\)

\(\Leftrightarrow A=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)\)

\(\Leftrightarrow-A=\left[\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right]\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)hay \(-A\ge\frac{-5}{4}\)

\(\Rightarrow A\le\frac{5}{4}\)

Vậy \(A_{max}=\frac{5}{4}\)(Dấu "="\(\Leftrightarrow x=\frac{1}{2}\))

13 tháng 7 2019

\(D=4x^2+6x+1\)

\(D=\left(2x\right)^2+2.2x.\frac{3}{2}+\frac{9}{4}+1-\frac{9}{4}\)

\(D=\left(2x+\frac{9}{4}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu = xảy ra khi : 

  \(2x+\frac{9}{4}=0\Rightarrow x=-\frac{9}{8}\)

Vậy Dmin = - 5/ 4 tại x = -9/8

12 tháng 3 2018

A + 1 = x^2+1+6x+8/x^2+1

         = x^2+6x+9/x^2+1

         = (x+3)^2/x^2+1 >= 0

=> A >= -1

Dấu "=" <=> x+3=0 <=> x=-3

Vậy ............

Tk mk nha

23 tháng 6 2017

\(A=\dfrac{5}{x^2-6x+1}=\dfrac{5}{\left(x^2-6x+9\right)-8}\)

Ta có :

\(\dfrac{5}{\left(x-3\right)^2-8}\le\dfrac{-5}{8}\)\(\left(x-3\right)^2-8\ge-8\)

Vậy \(Max_A=\dfrac{-5}{8}\) khi \(x-3=0\Rightarrow x=3\)

23 tháng 6 2017

\(A=\dfrac{5}{x^2-6x+1}=\dfrac{5}{x^2-6x+9-8}=\dfrac{5}{\left(x-3\right)^2-8}\)

Để A lớn nhất thì \(\left(x-3\right)^2-8\) nhỏ nhất

Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2-8\ge-8\)

\(\Leftrightarrow A=\dfrac{5}{\left(x-3\right)^2-8}\le\dfrac{-5}{8}\)

Dấu " = " khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)

Vậy \(MAX_A=\dfrac{-5}{8}\) khi x = 3

23 tháng 6 2017

a, Để A đạt GTLN thì \(x^2-6x+1\) đạt GTNN.

\(x^2-2x3+3^2-8\)

\(\left(x-3\right)^2-8\ge-8\)

Dấu "=" xảy ra khi \(x-3=0\)\(\Rightarrow\)\(x=3\)

Vậy GTNN của \(x^2-6x+1\)là -8 khi x=3

Thay x = 3 vào biểu thức a ta được:

\(A=\frac{5}{9-18+1}=-\frac{5}{8}\)

Vậy GTLN của A là -5/8

7 tháng 8 2018

vì tử thức là 2 không đổi , để biểu thức A có giá trị khi mẫu thức : \(x^2-6x+1\)có GTLN                                                                     mà : \(x^2-6x+1=[(x^2+2x\frac{6}{2}+\frac{36}{4})-\frac{36}{4}+1]=[(x+\frac{6}{2})^2-8]\)                                                                                             =\(-8+(x+\frac{6}{2})^2\)vì \((x-\frac{6}{2})^2\ge0\forall x\)\(\Rightarrow x^2-6x+1=-8+(x+\frac{6}{2})^2\le-8\)            vậy GTNN  \(x^2-6x+1=-8\)đạt được khi \((x+\frac{6}{2})^2=\Rightarrow x=-\frac{6}{2}\)\(\Rightarrow A\ge-8\)vậy MAX\((A)=-8\)đạt đươc \(\Leftrightarrow x=-\frac{6}{2}\)

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

28 tháng 12 2019

\(B=\frac{x^2-6x+14}{x^2-6x+12}\)

\(B=\frac{x^2-6x+12+2}{x^2-6x+12}\)

\(B=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}\)

\(B=1+\frac{2}{\left(x-3\right)^2+3}\le\frac{5}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow x=3\)

28 tháng 12 2019

B=\(\frac{x^2-6x+14}{x^2-6x+12}\)

=\(\frac{x^2-6x+9+3+2}{x^2-6x+9+3}\)

=\(\frac{\left(x^2-6x+9\right)+3+2}{\left(x^2-6x+9\right)+3}\)

=\(\frac{\left(x-3\right)^2+3+2}{\left(x-3\right)^2+3}\)

=\(\frac{\left(x-3\right)^2+3}{\left(x-3\right)^2+3}+\frac{2}{\left(x-3\right)^2+3}\)

=1+\(\frac{2}{\left(x-3\right)^2+3}\)

*Ta có:(x-3)2 \(\ge\) 0;với mọi x;cộng 3 vào 2 vế

\(\Rightarrow\)(x-3)2+3 \(\ge\) 0+3;với mọi x

\(\Rightarrow\)(x-3)2+3 \(\ge\) 3;với mọi x

\(\Rightarrow\)\(\frac{2}{\left(x-3\right)^2+3}\) \(\ge\) 0;với mọi x;lấy hai vế cộng cho1

\(\Rightarrow\)\(1+\frac{2}{\left(x-3\right)^2+3}\)\(\ge\)1+0;với mọi x

Vậy .................................

9 tháng 7 2016

a) \(-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)

Vậy Max = 10 <=> x = 3

b) \(-5x^2-4x+1=-5\left(x^2+2.x.\frac{2}{5}+\frac{4}{25}\right)+\frac{4}{5}+1=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\)

Vậy Max = \(\frac{9}{5}\Leftrightarrow x=-\frac{2}{5}\)

2 tháng 4 2016

GTLN của A=12 nha pan k đúng cho mk nha!

16 tháng 6 2016

\(A=\frac{1}{x^2-6x+17}=\frac{1}{x^2-2x\cdot3+9+8}=\frac{1}{\left(x-3\right)^2+8}\le\frac{1}{8}\forall x\in R\)

Vậy GTLN của A bằng 1/8 khi x = 3.

14 tháng 7 2019

\(A=\left(x^2+x+1\right)^2=\left[\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\right]^2=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\ge\frac{9}{16}\)\("="\Leftrightarrow x=-\frac{1}{2}\)

\(B=x^4-6x^3+10x^2-6x+9\)

\(B=\left(x^4-6x^3+9x^2\right)+\left(x^2-6x+9\right)\)

\(B=x^2\left(x^2-6x+9\right)+\left(x^2-6x+9\right)=\left(x^2+1\right)\left(x-3\right)^2\ge0\)\("="\Leftrightarrow x=3\)

\(M=\frac{3}{4x^2-4x+5}=\frac{3}{4x^2-4x+1+4}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

\("="\Leftrightarrow x=\frac{1}{2}\)

14 tháng 7 2019

bạn giải thích bài 2 hộ mình, tại sao lại có ≤ \(\frac{3}{4}\)vậy? mình đi học thấy nhiều đứa viết thế cô hỏi ở đâu ra mà ko bt.