
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=-x^2+x+1\)
\(\Leftrightarrow A=-\left(x^2-x-1\right)\)
\(\Leftrightarrow A=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)\)
\(\Leftrightarrow-A=\left[\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right]\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)hay \(-A\ge\frac{-5}{4}\)
\(\Rightarrow A\le\frac{5}{4}\)
Vậy \(A_{max}=\frac{5}{4}\)(Dấu "="\(\Leftrightarrow x=\frac{1}{2}\))
\(D=4x^2+6x+1\)
\(D=\left(2x\right)^2+2.2x.\frac{3}{2}+\frac{9}{4}+1-\frac{9}{4}\)
\(D=\left(2x+\frac{9}{4}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu = xảy ra khi :
\(2x+\frac{9}{4}=0\Rightarrow x=-\frac{9}{8}\)
Vậy Dmin = - 5/ 4 tại x = -9/8

A + 1 = x^2+1+6x+8/x^2+1
= x^2+6x+9/x^2+1
= (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" <=> x+3=0 <=> x=-3
Vậy ............
Tk mk nha

\(A=\dfrac{5}{x^2-6x+1}=\dfrac{5}{\left(x^2-6x+9\right)-8}\)
Ta có :
\(\dfrac{5}{\left(x-3\right)^2-8}\le\dfrac{-5}{8}\)vì \(\left(x-3\right)^2-8\ge-8\)
Vậy \(Max_A=\dfrac{-5}{8}\) khi \(x-3=0\Rightarrow x=3\)
\(A=\dfrac{5}{x^2-6x+1}=\dfrac{5}{x^2-6x+9-8}=\dfrac{5}{\left(x-3\right)^2-8}\)
Để A lớn nhất thì \(\left(x-3\right)^2-8\) nhỏ nhất
Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2-8\ge-8\)
\(\Leftrightarrow A=\dfrac{5}{\left(x-3\right)^2-8}\le\dfrac{-5}{8}\)
Dấu " = " khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)
Vậy \(MAX_A=\dfrac{-5}{8}\) khi x = 3

a, Để A đạt GTLN thì \(x^2-6x+1\) đạt GTNN.
\(x^2-2x3+3^2-8\)
\(\left(x-3\right)^2-8\ge-8\)
Dấu "=" xảy ra khi \(x-3=0\)\(\Rightarrow\)\(x=3\)
Vậy GTNN của \(x^2-6x+1\)là -8 khi x=3
Thay x = 3 vào biểu thức a ta được:
\(A=\frac{5}{9-18+1}=-\frac{5}{8}\)
Vậy GTLN của A là -5/8
vì tử thức là 2 không đổi , để biểu thức A có giá trị khi mẫu thức : \(x^2-6x+1\)có GTLN mà : \(x^2-6x+1=[(x^2+2x\frac{6}{2}+\frac{36}{4})-\frac{36}{4}+1]=[(x+\frac{6}{2})^2-8]\) =\(-8+(x+\frac{6}{2})^2\)vì \((x-\frac{6}{2})^2\ge0\forall x\)\(\Rightarrow x^2-6x+1=-8+(x+\frac{6}{2})^2\le-8\) vậy GTNN \(x^2-6x+1=-8\)đạt được khi \((x+\frac{6}{2})^2=\Rightarrow x=-\frac{6}{2}\)\(\Rightarrow A\ge-8\)vậy MAX\((A)=-8\)đạt đươc \(\Leftrightarrow x=-\frac{6}{2}\)

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2

\(B=\frac{x^2-6x+14}{x^2-6x+12}\)
\(B=\frac{x^2-6x+12+2}{x^2-6x+12}\)
\(B=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}\)
\(B=1+\frac{2}{\left(x-3\right)^2+3}\le\frac{5}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow x=3\)
B=\(\frac{x^2-6x+14}{x^2-6x+12}\)
=\(\frac{x^2-6x+9+3+2}{x^2-6x+9+3}\)
=\(\frac{\left(x^2-6x+9\right)+3+2}{\left(x^2-6x+9\right)+3}\)
=\(\frac{\left(x-3\right)^2+3+2}{\left(x-3\right)^2+3}\)
=\(\frac{\left(x-3\right)^2+3}{\left(x-3\right)^2+3}+\frac{2}{\left(x-3\right)^2+3}\)
=1+\(\frac{2}{\left(x-3\right)^2+3}\)
*Ta có:(x-3)2 \(\ge\) 0;với mọi x;cộng 3 vào 2 vế
\(\Rightarrow\)(x-3)2+3 \(\ge\) 0+3;với mọi x
\(\Rightarrow\)(x-3)2+3 \(\ge\) 3;với mọi x
\(\Rightarrow\)\(\frac{2}{\left(x-3\right)^2+3}\) \(\ge\) 0;với mọi x;lấy hai vế cộng cho1
\(\Rightarrow\)\(1+\frac{2}{\left(x-3\right)^2+3}\) \(\ge\)1+0;với mọi x
Vậy .................................

a) \(-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)
Vậy Max = 10 <=> x = 3
b) \(-5x^2-4x+1=-5\left(x^2+2.x.\frac{2}{5}+\frac{4}{25}\right)+\frac{4}{5}+1=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\)
Vậy Max = \(\frac{9}{5}\Leftrightarrow x=-\frac{2}{5}\)

\(A=\frac{1}{x^2-6x+17}=\frac{1}{x^2-2x\cdot3+9+8}=\frac{1}{\left(x-3\right)^2+8}\le\frac{1}{8}\forall x\in R\)
Vậy GTLN của A bằng 1/8 khi x = 3.

\(A=\left(x^2+x+1\right)^2=\left[\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\right]^2=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\ge\frac{9}{16}\)\("="\Leftrightarrow x=-\frac{1}{2}\)
\(B=x^4-6x^3+10x^2-6x+9\)
\(B=\left(x^4-6x^3+9x^2\right)+\left(x^2-6x+9\right)\)
\(B=x^2\left(x^2-6x+9\right)+\left(x^2-6x+9\right)=\left(x^2+1\right)\left(x-3\right)^2\ge0\)\("="\Leftrightarrow x=3\)
\(M=\frac{3}{4x^2-4x+5}=\frac{3}{4x^2-4x+1+4}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\("="\Leftrightarrow x=\frac{1}{2}\)
bạn giải thích bài 2 hộ mình, tại sao lại có ≤ \(\frac{3}{4}\)vậy? mình đi học thấy nhiều đứa viết thế cô hỏi ở đâu ra mà ko bt.
A = -x^2 - 6x + 1
= -(x^2 + 6x + 9) + 10
= -(x + 3)^2 + 10 ≤ 10
GTLN của A là 10 khi x = -3.
Ta có: \(A=-x^2-6x+1\)
\(=-\left(x^2+6x-1\right)\)
\(=-\left(x^2+6x+9-10\right)\)
\(=-\left(x+3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi x+3=0
=>x=-3