\(x^3-y^3-x^2-y^2+\)11xy

biết x-y=3

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Sửa đề: Biết x - y = -3.

\(x^3-y^3-x^2-y^2+11xy\)

\(\left(x-y\right)^3+3xy\left(x-y\right)-\left(x-y\right)^2-2xy+11xy\)

\(\left(-3\right)^3+3xy.\left(-3\right)-\left(-3\right)^2+9xy\)

\(=-27-9=-36\)

24 tháng 2 2020

a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)

\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)

\(-2y^3\left(4x^3-xy^2+y^3\right)\)

\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)

\(-8x^3y^3+2xy^5-2y^6\)

\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)

\(-\left(x^3y^3+8x^3y^3\right)\)

\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)

24 tháng 2 2020

b) 

(!)  \(2\left(x+y\right)^2-7\left(x+y\right)+5\)

\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)

\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)

\(=\left(2x+2y-5\right)\left(x+y-1\right)\)

(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\)

21 tháng 10 2016

a) B= 2x2-3x+1

=(2x2-2x)-(x-1)

=2x(x-1)-(x-1)

=(2x-1)(x-1)

\(\left|x\right|=\frac{1}{2}\)nên ta có \(x=\frac{1}{2}\)hoặc\(x=\frac{-1}{2}\)

nếu \(x=\frac{1}{2}\)thì

B=(2*\(\frac{1}{2}\)-1)(\(\frac{1}{2}\)-1)

B=0

nếu x= -1/2

thì B= (2*(-1/2)-1)(-1/2-1)

B=(-2)*(-3/2)

B=3

22 tháng 10 2016

giúp e câu b vs a Phong

21 tháng 8 2018

a,

\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)

\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)

21 tháng 8 2018

b,

\(x^2+y^2=\left(x-y\right)^2+2xy=1+12=13\)

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1\cdot\left(13+6\right)=19\)

b: \(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]\)

\(=3\left(1-2xy\right)-2\left(1+3xy\right)\)

\(=3-6xy-2-6xy=-12xy+1\)

c: \(=\left(x+y\right)^3-3\left(x^2+y^2+2xy\right)+3\left(x+y\right)+2012\)

\(=101^2-3\cdot101^2+3\cdot101+2012\)

=1002013

1 tháng 10 2018

1.

Ta có :

x+y=1

=> ( x+y) 2 = 12 = 1

<=> x2 + 2xy +y2 = 1

mà x2+y2 = 13

<=> 2xy = 1 -13 = -12

<=> xy = -6

Ta lại có :

x3 +y3 = (x+y)(x2 + y2 -xy )

mà x+y = 1 ; x2 + y2 = 13 ; xy = -6

=> x3 + y3 = 1 [ 13 - (- 6)]

=> x3 + y3 = 1(13+6)

=> x3 +y3 = 19

7 tháng 7 2019

a) Ta có:

x + y = 3

=> ( x + y)2 = 9

=> x2 + 2xy + y2 = 9

=> 10 + 2xy = 9

=> 2xy = 9 - 10 = -1

=> xy = -1/2 

Ta có:

 x3 + y3 = (x + y)(x2 - xy + y2)

 = 3.(10 + 1/2) = 63/2

b) Ta có: x + y = a

=> (x + y)2 = a2

=> x2 + 2xy + y2 = a2

=> b + 2xy = a2

=> xy = (a2 - b)/2

Ta có:  x3 + y3 = (x + y)(x2 + xy + y2)

 = a[b + (a2 - b )/2] = ab + (a3 - b)/2.

7 tháng 7 2019

Làm b) công thức tổng quát luôn

x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2

Thay x^2+y^2=b  vào ta được:

b+2xy=a^2 => xy=(a^2-b)/2 

TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2

6 tháng 1 2017

Áp đụng bất đẳng thức vào

\(\left(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}\right)\ge\frac{\left(x+y+z\right)^2}{2+3+4}=\frac{x^2+y^2+z^2}{2+3+4}+\frac{2\left(xz+yz+xy\right)}{2+3+4}\)

\(\Rightarrow\hept{\begin{cases}2\left(xz+yz+xy\right)=0\\\frac{x^2}{2}=\frac{y^2}{3}=\frac{z^2}{4}\end{cases}\Rightarrow x=y=z=0}\)\(\Rightarrow D=0\)

6 tháng 1 2017

Ta có

\(\frac{x^2+y^2+z^2}{2+3+4}=\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}\)

\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{9}\right)+\left(\frac{y^2}{3}-\frac{y^2}{9}\right)+\left(\frac{z^2}{4}-\frac{z^2}{9}\right)=0\)

\(\Leftrightarrow\frac{7x^2}{18}+\frac{2y^2}{9}+\frac{5z^2}{36}=0\)

\(\Leftrightarrow x=y=z=0\)

\(\Rightarrow D=0\)

14 tháng 8 2020

Bài làm:

\(A=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(y-x\right)\)

\(A=\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(A=\left(x+y+x-y\right)^2\)

\(A=\left(2x\right)^2\)

Với x = -1/3 ta được:

\(A=\left(2.\frac{-1}{3}\right)^2=\frac{4}{9}\)

14 tháng 8 2020

A=(x+y)2+(x-y)2-2(x+y)(y-x)

A=(x+y)2+2(x+y)(x-y)+(x-y)2

A=(x+y+x-y)2

A=(2x)2

với x+-1/3 ta được:

A=(2.-1/3)2=4/9

21 tháng 9 2018

\(A=\left(x+y\right)^2-4\left(x+y\right)+1=3^2+4.3+1=22\)

21 tháng 9 2018

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x^2+2xy+y^2\right)-4.\left(x+y\right)+1\)

\(A=\left(x+y\right)^2-4.\left(x+y\right)+1\)

Ta có: \(x+y=3\)

\(\Rightarrow A=3^2-4.3+1\)

\(A=9-12+1\)

\(A=-2\)

Vậy \(A=-2\)tại \(x+y=3\)

Tham khảo nhé~