K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)

Lấy 7S trừ S ta có : 

7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)

6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)

21 tháng 10 2016

Đặt \(A=\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\)

\(\frac{-1}{7}.A=\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+\left(\frac{-1}{7}\right)^3+...+\left(\frac{-1}{7}\right)^{2008}\)

\(A-\frac{-1}{7}.A=\left[\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\right]-\left[\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+\left(\frac{-1}{7}\right)^3+...+\left(\frac{-1}{7}\right)^{2008}\right]\)

\(A+\frac{1}{7}.A=\left(\frac{-1}{7}\right)^0-\left(\frac{-1}{7}\right)^{2008}\)

\(\frac{8}{7}.A=1-\left(\frac{1}{7}\right)^{2008}\)

\(\frac{8}{7}.A=1-\frac{1}{7^{2008}}\)

\(A=\left(1-\frac{1}{7^{2008}}\right):\frac{8}{7}=\frac{\left(1-\frac{1}{7^{2008}}\right).7}{8}\)

23 tháng 6 2015

đặt A=(-7) + (-7)+ (-7)+ ... + (-7)2006 + (-7)2007

=>-7A= (-7)+ (-7)+ ... + (-7)2007 + (-7)2008

=>-7A-A= (-7)+ (-7)+ ... + (-7)2007 + (-7)2008-(-7) - (-7)- (-7)- ... - (-7)2006 - (-7)2007

=>-8A=(-7)2008-(-7)

=72008+7

=>A=(72008+7):(-8)

20 tháng 6 2016

Câu 1

4 p/s   cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau

d/s la x= - 329

Câu   2

NHân vs 7 thành 7S rồi rút gọn là đc

 

20 tháng 6 2016

Câu 1 :

a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)