\(\frac{2^3.\left(0,5\right)^3.3^7}{2.\left(0,5\right)^4.3^8}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2016

\(\frac{2^3.\left(0,5\right)^3.3^7}{2.\left(0,5\right)^4.3^8}=\frac{2^3.\left(\frac{1}{2}\right)^3.3^7}{2.\left(\frac{1}{2}\right)^4.3^8}=\frac{2^3.\frac{1^3}{2^3}.3^7}{2.\frac{1^4}{2^4}.3^8}=\frac{1.3^7}{\frac{1}{2^3}.3^8}=\frac{3^7}{\frac{3^8}{2^3}}=3^7.\frac{2^3}{3^8}=\frac{2^3}{3}=\frac{8}{3}\)

6 tháng 9 2019

(9^5.5^7)/(45^7)

\(=\dfrac{\left(2\cdot0.5\right)^3\cdot3^7}{2\cdot\dfrac{16}{625}\cdot3^8}=\dfrac{1}{3}\cdot\dfrac{1}{\dfrac{32}{625}}=\dfrac{1}{3}\cdot\dfrac{625}{32}=\dfrac{625}{96}\)

16 tháng 7 2016

\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)

\(P=\left(-1,1\right):\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)

\(P=\frac{11}{30}+\frac{1}{3}+\left(-\frac{1}{12}\right)\)

\(P=\frac{37}{60}\)

\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)

\(Q=\left(-0,928\right):\frac{4}{7}:\left[\left(-\frac{119}{36}\right).2\frac{2}{17}\right]\)

\(Q=\left(-1,624\right):\left(-\frac{245}{36}\right)\)

\(Q=\frac{1044}{4375}\)

f) \(\frac{3^3.\left(0,5\right)^5}{\left(1,5\right)^4}=\frac{3^3.\left(0,5\right)^5}{\left[3.\left(0,5\right)\right]^4}=\frac{3^3.\left(0,5\right)^5}{3^4.\left(0,5\right)^4}=\frac{0,5}{3}=\frac{1}{6}\)

b) \(\frac{2^3+3.2^6-4^3}{2^3+3^2}=\frac{2^3.\left(1+3.2^3-2^3\right)}{2^3+3^2}=\frac{2^3.17}{17}=2^3=8\)

Các phần còn lại tương tự, bạn tự làm nhé !

(*) Lưu ý ở những bài rút gọn có chứa lũy thừa thì bạn đưa số đó về số nguyên tố rồi thực hiện như bình thường .

VD : \(4^3=\left(2^2\right)^3=2^6\) ( đưa về số nguyên tố là 2 )

\(6^3=\left(2.3\right)^3=2^3.3^3\) ( đưa về tích hai số nguyên tố )

20 tháng 7 2019

mk doan la` de sai, sua: \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)

\(=\frac{3^7.\left(3^2-2^3\right)+2^{10}.\left(3^2-2^3\right)}{3^7.\left(3^3-2^2\right)+2^{10}.\left(3^3-2^2\right)}=\frac{3^7+2^{10}}{\left(3^7+2^{10}\right).24}=\frac{1}{24}\)

\(P=\left(\dfrac{-1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{6}:2\)

\(=\left(\dfrac{1}{2}+\dfrac{3}{5}\right):3+\dfrac{1}{3}-\dfrac{1}{12}\)

\(=\dfrac{11}{10}\cdot\dfrac{1}{3}+\dfrac{1}{4}\)

\(=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{22}{60}+\dfrac{15}{60}=\dfrac{37}{60}\)

\(Q=\left(\dfrac{2}{25}-\dfrac{126}{125}\right)\cdot\dfrac{7}{4}:\left[\dfrac{-119}{36}\cdot\dfrac{36}{17}\right]\)

\(=\dfrac{-116}{125}\cdot\dfrac{7}{4}:\left(-7\right)\)

\(=\dfrac{116}{125}\cdot\dfrac{7}{4}\cdot\dfrac{1}{7}=\dfrac{29}{125}\)

16 tháng 7 2016

\(=\frac{\left(0,5\right)^5.2^9}{2^6.2^4}=\frac{\left(0,5\right)^5.2^9}{2^9.2}=\left(\frac{1}{2}\right)^5\div2\)

\(=\frac{1^5}{2^5}.\frac{1}{2}=\frac{1}{2^6}=\frac{1}{64}\)

16 tháng 7 2016

=\(\frac{16}{1024}\)=\(\frac{1}{64}\)

23 tháng 9 2020

f) \(\left(1:\frac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\frac{1}{49}\)

\(=\left(1\cdot7\right)^2:\left(2^6:2^5\right)\cdot\frac{1}{49}=7^2\cdot\frac{1}{2}\cdot\frac{1}{49}=49\cdot\frac{1}{49}\cdot\frac{1}{2}=\frac{1}{2}\)

g) \(\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{\left(2^2\right)^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^5}\)

\(=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\left(3^5-3^6\right)}{2^{12}\left(3^6+3^5\right)}=\frac{2^{12}\left[3^5\left(1-3\right)\right]}{2^{12}\left[3^5\left(3+1\right)\right]}=\frac{2^{12}\cdot3^5\cdot\left(-2\right)}{2^{12}\cdot3^5\cdot4}=\frac{-2}{4}=-\frac{1}{2}\)

23 tháng 9 2020

                                                               Bài giải

\(f,\text{ }\left(1\text{ : }\frac{1}{7}\right)^2\left[\left(2^2\right)^3\text{ : }2^5\right]\cdot\frac{1}{49}\)

\(=7^2\left(2^6\text{ : }2^5\right)\cdot\frac{1}{7^2}\)

\(=2\)

\(g,\text{ }\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\cdot3^5\cdot\left(1-3\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}=-\frac{2}{4}=-\frac{1}{2}\)