K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)

\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)

20 tháng 6 2017

Mình ra được hết quả không à bạn!!! Bằng 0 nha

a: Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)

\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)

\(=0\)

b: Ta có: \(\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}\)

\(=5+7-1\)

=11

24 tháng 7 2017

a)\(\sqrt{39}-27\sqrt{5}\)

b)0

4 tháng 1 2018

12 tháng 7 2018

\(\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right)\sqrt{3}\)

\(=\left(2\sqrt{3}+3\sqrt{15}-12\sqrt{15}\right)\sqrt{3}\)

\(=\left(2\sqrt{3}-9\sqrt{15}\right)\sqrt{3}\)

\(=6-9\sqrt{45}\)

12 tháng 7 2018

\(a.\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right)\sqrt{3}=\left(2\sqrt{3}+3\sqrt{15}-12\sqrt{15}\right)\sqrt{3}=2.3-9\sqrt{9.5}=6-27\sqrt{5}\) \(b.\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{36.7}-\sqrt{100.7}+\sqrt{144.7}-\sqrt{64.7}=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)

25 tháng 6 2019

Ối giời! Bấm máy tính đi bn! Người ta sinh ra cái máy tính là để làm mấy việc này mà. :D

25 tháng 6 2019

Thông Ngô lần sau đăng ít thôi bạn ơi, nhiều quá không ai làm đc đâu

ok chứ Long Lê

c.√252−√700+√1008−√448

\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)

=(6-10+12-8)\(\sqrt{7}\)

=0

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

a)

\(\sqrt{12}-\sqrt{27}+\sqrt{3}=\sqrt{4}.\sqrt{3}-\sqrt{9}.\sqrt{3}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)

\(=\sqrt{3}(2-3+1)=0\)

b)

\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}.\sqrt{63}-\sqrt{4}.\sqrt{175}+\sqrt{4}.\sqrt{252}-\sqrt{4}.\sqrt{112}\)

\(=2(\sqrt{63}-\sqrt{175}+\sqrt{252}-\sqrt{112})\)

\(=2(\sqrt{9}.\sqrt{7}-\sqrt{25}.\sqrt{7}+\sqrt{36}.\sqrt{7}-\sqrt{16}.\sqrt{7})\)

\(=2(3\sqrt{7}-5\sqrt{7}+6\sqrt{7}-4\sqrt{7})=2\sqrt{7}(3-5+6-4)=0\)

------------------

\(\sqrt{3}(\sqrt{12}+\sqrt{27}-\sqrt{3})=\sqrt{36}+\sqrt{81}-\sqrt{9}\)

\(=\sqrt{6^2}+\sqrt{9^2}-\sqrt{3^2}=6+9-3=12\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

c)

\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}=\frac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{5}}{\sqrt{7}.\sqrt{3}+\sqrt{7}.\sqrt{5}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{5})}{\sqrt{7}(\sqrt{3}+\sqrt{5})}=\frac{\sqrt{2}}{\sqrt{7}}\)

\(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}=\frac{\sqrt{81}.\sqrt{5}+3\sqrt{9}.\sqrt{3}}{3\sqrt{3}+\sqrt{9}.\sqrt{5}}=\frac{9\sqrt{5}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}\)

\(=\frac{3(3\sqrt{5}+3\sqrt{3})}{3\sqrt{3}+3\sqrt{5}}=3\)

d)

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{6}+\sqrt{9}+\sqrt{12})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{3}+\sqrt{3}.\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{3}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})(1-\sqrt{3})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)

Bài 1:

a: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)

\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)

\(=8\sqrt{7}\)

Bài 3: 

a: \(\sqrt{27^2-23^2}=10\sqrt{2}\)

b: \(\sqrt{37^2-35^2}=12\)

c: \(\sqrt{65^2-63^2}=16\)

d: \(\sqrt{117^2-108^2}=45\)