\(\frac{4x^2+2x+1}{x^2+2x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Nên sửa -2x ở tử thành 2x. Giải như sau :

\(\frac{x^2+2x-1}{2x^2+4x+9}=\frac{\frac{1}{2}\left(2x^2+4x+9\right)-\frac{11}{2}}{2x^2+4x+9}=\frac{1}{2}-\frac{11}{4x^2+8x+18}=\frac{1}{2}-\frac{11}{4\left(x+1\right)^2+14}\)

Biểu thức đạt GTNN khi \(\frac{11}{4\left(x+1\right)^2+14}\)đạt GTLN hay 4(x + 1)2 + 14 đạt GTNN hay khi x = -1

Vậy GTNN của biểu thức là : \(\frac{1}{2}-\frac{11}{14}=-\frac{2}{7}\)khi x = -1

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

\(M=\frac{3}{x^2-4x+5}\)

\(=\frac{3}{x^2-4x+4+1}\)

\(=\frac{3}{\left(x-2\right)^2+1}\le3\)

\(Max_M=3\Leftrightarrow x=2\)

23 tháng 11 2018

a) \(A=2x^2+2x+3\)

\(A=2\left(x^2+x+\frac{3}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{5}{4}\right]\)

\(A=2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]\)

\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

b) Biến đổi mẫu thức :

\(3x^2+4x+15\)

\(=3\left(x^2+\frac{4}{3}x+5\right)\)

\(=3\left[x^2+2\cdot x\cdot\frac{2}{3}+\left(\frac{2}{3}\right)^2+\frac{41}{9}\right]\)

\(=3\left[\left(x+\frac{2}{3}\right)^2+\frac{41}{9}\right]\)

\(=3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}\)

\(B=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\ge\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{2}{3}=0\Leftrightarrow x=\frac{-2}{3}\)

c) \(C=-x^2+2x-2\)

\(C=-\left(x^2-2x+2\right)\)

\(C=-\left(x^2-2\cdot x\cdot1+1^2+1\right)\)

\(C=-\left[\left(x-1\right)^2+1\right]\)

\(C=-1-\left(x-1\right)^2\le-1\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Biến đổi mẫu thức tương tự câu b)

11 tháng 2 2020

\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\cdot\left(\frac{x}{\left|x\right|}-\frac{y}{\left|y\right|}\right)\)

TH1: \(x,y>0\)

+) Xét \(x>y\)\(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+1\cdot\left(1-1\right)=1\)

+) Xét \(x< y\)\(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+\left(-1\right)\cdot\left(1-1\right)=1\)

TH2: \(x,y< 0\)

+) Xét \(x>y\)\(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1+1\cdot\left[-1-\left(-1\right)\right]=1\)

+) Xét \(x< y\)\(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1\)

TH3: \(x>0;y< 0\)\(P=\frac{xy}{-xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{-y}\right)=-1+1\cdot\left(1+1\right)=1\)

TH4: \(x< 0;y>0\)\(P=\frac{xy}{-xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{y}\right)=-1+\left(-1\right)\cdot\left(-1-1\right)=1\)

Nói chung với mọi x, y thì P = 1

12 tháng 5 2019

C1 : 

\(B=\frac{4\left(x^2+x+1\right)}{4\left(x^2+2x+1\right)}=\frac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\frac{x^2-2x+1}{4\left(x^2+2x+1\right)}=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x^2+2x+1\right)}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

C2 : 

\(B=\frac{x^2+x+1}{x^2+2x+1}\)\(\Leftrightarrow\)\(Bx^2-x^2+2Bx-x+B-1=0\)

\(\Leftrightarrow\)\(\left(B-1\right)x^2+\left(2B-1\right)x+\left(B-1\right)=0\)

+) Nếu \(B=1\) thì \(x=0\)

+) Nếu \(B\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)

                                                        \(\Leftrightarrow\)\(\left(2B-1\right)^2-4\left(B-1\right)\left(B-1\right)\ge0\)

                                                        \(\Leftrightarrow\)\(4B^2-4B+1-4B^2+8B-4\ge0\)

                                                        \(\Leftrightarrow\)\(4B-3\ge0\)

                                                        \(\Leftrightarrow\)\(B\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

11 tháng 6 2016

Hỏi đáp ToánHỏi đáp Toán

11 tháng 6 2016

Bn chờ tí , mk làm cho

27 tháng 5 2016

2) \(ĐKXĐ:x\notin\left\{-2;-3;-4\right\}\)

PT <=> \(x+\frac{x}{x+2}+\frac{x+3}{x^2+3x+2x+6}+\frac{x+4}{x^2+4x+2x+8}-1=0\)

<=>\(x+\frac{x}{x+2}+\frac{x+3}{x\left(x+3\right)+2\left(x+3\right)}+\frac{x+4}{x\left(x+4\right)+2\left(x+4\right)}-1=0\)

<=>\(x+\frac{x}{x+2}+\frac{x+3}{\left(x+2\right)\left(x+3\right)}+\frac{x+4}{\left(x+2\right)\left(x+4\right)}-1=0\)

<=>\(x+\frac{x}{x+2}+\frac{1}{x+2}+\frac{1}{x+2}-1=0\)

<=>\(x+\frac{x+1+1}{x+2}-1=0\)

<=>\(x+\frac{x+2}{x+2}-1=0\Leftrightarrow x+1-1=0\Leftrightarrow x=0\)

Vậy x=0 thì thỏa mãn PT