Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
\(A=2x^2+5x-3=2\left(x^2+\frac{5}{2}x-\frac{2}{3}\right)\)
\(=2\left(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{107}{48}\right)\)
\(=2\left[\left(x+\frac{5}{4}\right)^2-\frac{107}{48}\right]\)
\(=2\left[\left(x+\frac{5}{4}\right)^2\right]-\frac{107}{24}\ge\frac{-107}{24}\)
Vậy \(A_{min}=\frac{-107}{24}\Leftrightarrow x+\frac{5}{4}=0\Leftrightarrow x=-\frac{5}{4}\)
Ta có : C = (x + 1).(x + 2).(x + 3).(x + 4)
=> C = [(x + 1).(x + 4)].[(x + 2).(x + 3)]
=> C = [x2 + 5x + 4] . [x2 + 5x + 6]
Đặt t = x2 + 5x + 5
Khi đó t - 1 = x2 + 5x + 4 , t + 1 = x2 + 5x + 6
Nên C = (t - 1)(t + 1) = t2 - 1 = (x2 + 5x + 5)2 - 1
Mà (x2 + 5x + 5)2 \(\ge0\forall x\)
Do đó (x2 + 5x + 5)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của C là :
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
\(A=x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\)
Vì \((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A\geq 0+5=5\)
Vậy GTNN của $A$ là $5$ khi $(x+1)^2=0$ hay $x=-1$
--------------
\(B=x^2-6x+15=(x^2-2.3x+3^2)+6=(x-3)^2+6\)
Vì \((x-3)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow B\geq 0+6=6\)
Vậy GTNN của $B$ là $6$ khi $x=3$
---------------
\(C=x^2-5x+3=x^2-2.\frac{5}{2}x+(\frac{5}{2})^2-\frac{13}{4}=(x-\frac{5}{2})^2-\frac{13}{4}\)
Vì \((x-\frac{5}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow C\geq 0-\frac{13}{4}=\frac{-13}{4}\)
Vậy \(C_{\min}=\frac{-13}{4}\Leftrightarrow x=\frac{5}{2}\)
\(D=2x^2-7x+1=2(x^2-\frac{7}{2}x)+1\)
\(=2[x^2-2.\frac{7}{4}x+(\frac{7}{4})^2]-\frac{41}{8}\)
\(=2(x-\frac{7}{4})^2-\frac{41}{8}\)
Vì \((x-\frac{7}{4})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow D\geq 2.0-\frac{41}{8}=-\frac{41}{8}\)
Vậy \(D_{\min}=-\frac{41}{8}\Leftrightarrow x=\frac{7}{4}\)
--------------------
\(E=3x^2+2x=3(x^2+\frac{2}{3})=3[x^2+2.\frac{1}{3}x+(\frac{1}{3})^2]-\frac{1}{3}\)
\(=3(x+\frac{1}{3})^2-\frac{1}{3}\)
Vì \((x+\frac{1}{3})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow E\geq 3. 0-\frac{1}{3}=\frac{-1}{3}\)
Vậy \(E_{\min}=\frac{-1}{3}\Leftrightarrow x=\frac{-1}{3}\)
A = x2 + 5x + 8
= ( x2 + 5x + 25/4 ) + 7/4
= ( x + 5/2 )2 + 7/4 ≥ 7/4 ∀ x
Dấu "=" xảy ra khi x = -5/2
=> MinA = 7/4 <=> x = -5/2
B = x( x - 6 )
= x2 - 6x
= ( x2 - 6x + 9 ) - 9
= ( x - 3 )2 - 9 ≥ -9 ∀ x
Dấu "=" xảy ra khi x = 3
=> MinB = -9 <=> x = 3
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Dấu "=" xảy ra khi x = 0
=> MinC = 5 <=> x = 0