K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

ta có: M = x2 + y2 - 2x + 6y + 11

M = (x2 - 2x + 1) + (y2 + 6y + 9) + 1

M = (x2 - 2.1.x + 12) + (y2 + 2.3.y + 32) + 1

M = (x-1)2 + (y+3)2 + 1

Để M nhỏ nhất

=> (x-1)2 và (y+3)2 nhỏ nhất

mà \(\left(x-1\right)^2\ge0;\left(y+3\right)^2\ge0.\)

Dấu "=" xảy ra khi:

x-1 = 0 => x = 1

y+3 = 0 => y = -3

=> giá trị nhỏ nhất của M = 1 tại x = 1 ; y = -3

9 tháng 10 2018

Ta có : \(x^2;y^2\ge0\forall x;y\)

     \(2x;6y\ge0\forall x;y\)

\(=>x^2+y^2-2x+6y+11\ge0\)

\(=>x^2+y^2-2x+6y+11\ge11\)

=> \(M\ge11\)

Dấu "=" xảy ra \(\Leftrightarrow x;y=0\)

Vậy Mmin=11 <=> x;y=0

Study well

10 tháng 11 2015

\(P=x^2+y^2-2x+6y+19=x^2-2x+1+y^2+6y+9+9=\left(x-1\right)^2+\left(y+3\right)^2+9\)

Vì \(\left(x-1\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\)

Nên  \(\left(x-1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2+9\ge9\)

Vậy  giá trị nhỏ nhất của P là 9 tại

\(x-1=0\Rightarrow x=1\)

và \(y+3=0\Rightarrow y=-3\)

5 tháng 7 2018

\(K=x^2+2y^2-2xy+2x-6y+8\)

\(K=x^2+2x\left(y-1\right)-2y^2-6y+8\)

\(K=x^2+2x\left(y-1\right)-y^2-2y+1+y^2-4y+4+4\)

\(K=x^2+2x\left(y-1\right)-\left(y-1\right)^2+\left(y-2\right)^2+4\)

\(K=\left(x+y-1\right)^2+\left(y-2\right)^2+4\ge4\forall x;y\)

Dấu "=" xảy ra khi x = -3; y = 4

13 tháng 8 2018

\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)

Vậy GTNN của A là -22 khi x = 5

\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = -3

\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)

\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

Vậy GTNN của D là 16 khi x = 2; y = 0

\(E=x^2+2y^2-2xy+4x-6y+100\)

\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)

\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)

Vậy GTNN của E là 95 khi x = -1 ; y = 1

\(F=2x^2+y^2-2xy+4x+100\)

\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)

\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)

Vậy GTNN của F là 96 khi x = -2; y = -2

13 tháng 8 2018

\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

Vậy GTLN của A là 39 khi x = -6

\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)

Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)

19 tháng 7 2017

Ta có : M = x2 + y2 - x + 6y + 10

= (x2 - x + \(\frac{1}{4}\)) + (y2 + 6y + 9) + \(\frac{3}{4}\)

= (x - \(\frac{1}{2}\) )2 + (y + 3)\(\frac{3}{4}\)

Mà ; (x -  \(\frac{1}{2}\) )2 và (y + 3)\(\ge0\forall x\)

Nên :  (x - \(\frac{1}{2}\) )2 + (y + 3)\(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Vậy Mmin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\) và y = -3

19 tháng 7 2017

Ta có :  \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-9-\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Vì  \(\left(x-\frac{1}{2}\right)^2\ge0\)  và \(\left(y+3\right)^2\ge0\) nê \(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của M là 3/4 . Dấu bằng xảy ra khi x = 1/2 và y = -3

16 tháng 10 2016

P = x2 + y2 - 2x + 6y + 12 = x2 + y2 - 2x + 6x + 1 + 9 + 2

=> P = (x2 - 2x + 1) + (y2 + 6y + 9) + 2

=> P = (x - 1)2 + (y + 3)2 + 2 \(\ge\)2

Đẳng thức xảy ra khi: (x - 1)2 = 0 và (y + 3)2 = 0  <=> x = 1 và y = -3

Vậy GTNN của P là 2 khi x = 1 và y = -3.

27 tháng 10 2015

phân tich M=(2x+y)2 + (x-1)2 - 6(2x+y) + 2024

   M= ( 2x + y - 3 )2 + ( x- 1 )2 + 2015

M >= 2015

Dấu = xảy ra khi 2x + y - 3 = 0 và x-1 =0

suy ra x = y = 1

vậy GTNN M= 2015 khi và chi khi x=y=1