Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^2+y^2-2x+6y+19=x^2-2x+1+y^2+6y+9+9=\left(x-1\right)^2+\left(y+3\right)^2+9\)
Vì \(\left(x-1\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\)
Nên \(\left(x-1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2+9\ge9\)
Vậy giá trị nhỏ nhất của P là 9 tại
\(x-1=0\Rightarrow x=1\)
và \(y+3=0\Rightarrow y=-3\)
\(K=x^2+2y^2-2xy+2x-6y+8\)
\(K=x^2+2x\left(y-1\right)-2y^2-6y+8\)
\(K=x^2+2x\left(y-1\right)-y^2-2y+1+y^2-4y+4+4\)
\(K=x^2+2x\left(y-1\right)-\left(y-1\right)^2+\left(y-2\right)^2+4\)
\(K=\left(x+y-1\right)^2+\left(y-2\right)^2+4\ge4\forall x;y\)
Dấu "=" xảy ra khi x = -3; y = 4
\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)
Vậy GTNN của A là -22 khi x = 5
\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = -3
\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)
\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)
Vậy GTNN của D là 16 khi x = 2; y = 0
\(E=x^2+2y^2-2xy+4x-6y+100\)
\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)
\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)
Vậy GTNN của E là 95 khi x = -1 ; y = 1
\(F=2x^2+y^2-2xy+4x+100\)
\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)
\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)
Vậy GTNN của F là 96 khi x = -2; y = -2
\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)
Vậy GTLN của A là 39 khi x = -6
\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)
Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)
Ta có : M = x2 + y2 - x + 6y + 10
= (x2 - x + \(\frac{1}{4}\)) + (y2 + 6y + 9) + \(\frac{3}{4}\)
= (x - \(\frac{1}{2}\) )2 + (y + 3)2 + \(\frac{3}{4}\)
Mà ; (x - \(\frac{1}{2}\) )2 và (y + 3)2 \(\ge0\forall x\)
Nên : (x - \(\frac{1}{2}\) )2 + (y + 3)2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Vậy Mmin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\) và y = -3
Ta có : \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-9-\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\) nê \(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của M là 3/4 . Dấu bằng xảy ra khi x = 1/2 và y = -3
P = x2 + y2 - 2x + 6y + 12 = x2 + y2 - 2x + 6x + 1 + 9 + 2
=> P = (x2 - 2x + 1) + (y2 + 6y + 9) + 2
=> P = (x - 1)2 + (y + 3)2 + 2 \(\ge\)2
Đẳng thức xảy ra khi: (x - 1)2 = 0 và (y + 3)2 = 0 <=> x = 1 và y = -3
Vậy GTNN của P là 2 khi x = 1 và y = -3.
phân tich M=(2x+y)2 + (x-1)2 - 6(2x+y) + 2024
M= ( 2x + y - 3 )2 + ( x- 1 )2 + 2015
M >= 2015
Dấu = xảy ra khi 2x + y - 3 = 0 và x-1 =0
suy ra x = y = 1
vậy GTNN M= 2015 khi và chi khi x=y=1
ta có: M = x2 + y2 - 2x + 6y + 11
M = (x2 - 2x + 1) + (y2 + 6y + 9) + 1
M = (x2 - 2.1.x + 12) + (y2 + 2.3.y + 32) + 1
M = (x-1)2 + (y+3)2 + 1
Để M nhỏ nhất
=> (x-1)2 và (y+3)2 nhỏ nhất
mà \(\left(x-1\right)^2\ge0;\left(y+3\right)^2\ge0.\)
Dấu "=" xảy ra khi:
x-1 = 0 => x = 1
y+3 = 0 => y = -3
=> giá trị nhỏ nhất của M = 1 tại x = 1 ; y = -3
Ta có : \(x^2;y^2\ge0\forall x;y\)
\(2x;6y\ge0\forall x;y\)
\(=>x^2+y^2-2x+6y+11\ge0\)
\(=>x^2+y^2-2x+6y+11\ge11\)
=> \(M\ge11\)
Dấu "=" xảy ra \(\Leftrightarrow x;y=0\)
Vậy Mmin=11 <=> x;y=0
Study well