\(A=\left|x-2\right|+\left|2x+3\right|+\left|3x-4\right|.\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

Vì \(\left|2x+1\right|\ge0;\left|3x-4\right|\ge0;\left|2x-5\right|\ge0\)

\(\Rightarrow\left|2x+1\right|+\left|3x-4\right|+\left|2x-5\right|\ge0\)

\(\Rightarrow\left|2x+1\right|+\left|3x-4\right|+\left|2x-5\right|+5\ge5\)

\(\Rightarrow A\ge5\)

\(\Rightarrow\)Giá trị nhỏ nhất của A là 5

A=(3x+7)(2x+3)-(3x-5)(2x+11)  =6x2+9x+14x+21-6x2-33x+10x+55          =(6x2-6x2)+(9x+14x-33x+10x)+(21+55)  =76

20 tháng 7 2018

\(A=\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)

\(\Leftrightarrow A=6x^2+14x+9x+21-\left(6x^2-10x+33x-55\right)\)

\(\Leftrightarrow A=6x^2+23x+21-\left(6x^2+23x-55\right)\)

\(\Leftrightarrow A=6x^2+23x+21-6x^2-23x+55\)

\(\Leftrightarrow A=76\)

\(B=\left(x+1\right)\left(x^2-x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow B=\left(x+1\right)x^2-x\left(x+1\right)-\left(x+1\right)-\left(x-1\right)x^2-\left(x-1\right)x-\left(x-1\right)\)

\(\Leftrightarrow B=x^3+x^2-x^2-x-x-1-x^3+x^2-x^2+x-x+1\)

\(\Leftrightarrow B=\left(x^3-x^3\right)+\left(x^2-x^2+x^2-x^2\right)+\left(x-x-x-x\right)+\left(1-1\right)\)

\(\Leftrightarrow B=-2x\)

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

13 tháng 3 2017

\(a.A=2x^2+6x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+20\)

  \(A=\left(2x+\frac{3}{2}\right)^2+\frac{71}{4}\ge\frac{71}{4}\)

Vậy MinA = \(\frac{71}{4}\Leftrightarrow\left(2x+\frac{3}{2}\right)^2=0\)

                           \(\Leftrightarrow x=-\frac{3}{4}\)