\(\sqrt{x^2-2x+4}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

a,= \(\sqrt{x-4}-2=\sqrt{x}-4\)

=>\(x=2\)

vậy min b=0 <=> x=2

b =\(x-2\cdot2\sqrt{x}+4+6=\left(\sqrt{x}-2\right)^2+6\)

=>\(\left(\sqrt{x}-2\right)^2+6\ge6\)

vậy min b=6 <=> x=\(\sqrt{2}\)

\(x-2\cdot\frac{1}{2}\sqrt{x}+\frac{1}{4}-\frac{5}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\)

\(\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{5}{4}\)

vậy min =  \(\frac{5}{4}\Leftrightarrow x=\sqrt{\frac{1}{2}}\)

13 tháng 7 2017

các câu khác làm tương tự nhé

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

28 tháng 7 2016

c)đặt C= \(x+4\sqrt{x}-4=\left(x+4\sqrt{x}+4\right)-8\)

=\(\left(\sqrt{x}+2\right)^2-8\)

ta thấy : \(\left(\sqrt{x}+2\right)^2\ge4\) với mọi x>=0

=> \(\left(\sqrt{x}+2\right)^2-8\ge-4\)

=> GTNN của C=-4 khi x=0

 

15 tháng 9 2018

a) ta có : \(\sqrt{2x^2-2x+5}=\sqrt{2\left(x^2-x+\dfrac{5}{2}\right)}=\sqrt{2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{2}}\)

\(=\sqrt{2\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{2}}\ge\sqrt{\dfrac{9}{2}}\)

\(\Rightarrow GTNN\) của biểu thức trên là \(\sqrt{\dfrac{9}{2}}=\dfrac{3}{\sqrt{2}}\) khi \(x=\dfrac{1}{2}\)

b) ta có : \(1-\sqrt{-x^2+2x+5}=1-\sqrt{-x^2+2x-1+6}\)

\(=1-\sqrt{-\left(x-1\right)^2+6}\le1-\sqrt{6}\)

\(\Rightarrow GTLN\) của biểu thức trên là \(1-\sqrt{6}\) khi \(x=1\)

d) ta có : \(\dfrac{1}{2x-\sqrt{x}+3}=\dfrac{1}{2\left(x-\dfrac{\sqrt{x}}{2}+\dfrac{1}{16}\right)+\dfrac{23}{8}}\)

\(=\dfrac{1}{2\left(\sqrt{x}-\dfrac{1}{4}\right)^2+\dfrac{23}{8}}\le\dfrac{1}{\dfrac{23}{8}}=\dfrac{8}{23}\)

\(\Rightarrow GTLN\) của biểu thức trên là \(\dfrac{8}{23}\) khi \(x=\dfrac{1}{16}\)

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

22 tháng 7 2018

\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)

                                                                                    \(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)

             GTNN CỦA A=CĂN 2      TẠI X=4

\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)

GTNN CỦA B=CĂN 11 TẠI X=-3/2

bài 2

\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)

GTLN CỦA A=CĂN 7 TẠI X=0

\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)

để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất 

\(\sqrt{-\left(x-3\right)^2+2}\le2\)

=> GTLN CỦA B=1+2 =3 TẠI X=3

\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)

GTLN là 8 tại x=1/2

8 tháng 7 2016

a( \(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)(ĐKXĐ : \(1\le x\ne3\))

\(=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\left(x-3\right)}=\sqrt{x-1}+\sqrt{2}\)

b) \(x=4\left(2-\sqrt{3}\right)\Rightarrow x-1=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)

Thay vào P được : \(P=2-\sqrt{3}+\sqrt{2}\)

c) Với mọi \(x\ge1,x\ne3\)ta luôn có \(\sqrt{x-1}\ge0\Rightarrow\) \(P=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\). Dấu "=" xảy ra khi x = 1

Vậy Min P = \(\sqrt{2}\Leftrightarrow x=1\)

2. a) \(Q=\frac{\sqrt{x+2}-1}{x+1}\)(ĐKXĐ: \(-2\le x\ne-1\))

\(=\frac{\left(\sqrt{x+2}-1\right)\left(\sqrt{x+2}+1\right)}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\frac{x+2-1}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\frac{x+1}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\frac{1}{\sqrt{x+2}+1}\)b) \(x=40,25=\frac{161}{4}\Rightarrow x+2=\frac{169}{4}\Rightarrow Q=\frac{1}{\sqrt{\frac{169}{4}}+1}=\frac{1}{\frac{13}{2}+1}=\frac{2}{15}\)

c)  Ta có : \(Max_Q\Leftrightarrow Min_{\left(\sqrt{x+2}+1\right)}\) 

Mà : \(\sqrt{x+2}+1\ge1\) với mọi \(-2\le x\ne-1\)

Do đó Max Q = 1 \(\Leftrightarrow x=-2\)

30 tháng 6 2018

có phải/....

1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)

\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)

2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

30 tháng 6 2018

1.B=\(\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)