\(\sqrt{x-2}+\sqrt{y-3}\) ,biết x+y=6

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

Cách khác:

Đk: \(x\ge2,y\ge3\)

Với a,b\(\ge\) 0có:

\(a+b\le\sqrt{2\left(a^2+b^2\right)}\) <=> \(a^2+2ab+b^2\le2a^2+2b^2\) <=> \(0\le a^2-2ab+b^2\)

<=>\(0\le\left(a-b\right)^2\)

Dấu "=" xảy ra <=>a=b>0

Áp dụng bđt trên có:

\(S=\sqrt{x-2}+\sqrt{y-3}\le\sqrt{2\left(x-2+y-3\right)}=\sqrt{2\left(6-2-3\right)}\)(do x+y=6)

=> \(S\le\sqrt{2}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{y-3}\\x+y=6\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x-2=y-3\\x+y=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y-x=1\\x+y=6\end{matrix}\right.\) <=> x=2,5 và y=3,5(t/m)

NV
10 tháng 10 2019

\(S^2\le\left(1+1\right)\left(x-2+y-3\right)=2\left(x+y-5\right)=2\)

\(\Rightarrow S\le\sqrt{2}\)

\(\Rightarrow S_{max}=\sqrt{2}\) khi \(\left\{{}\begin{matrix}x-2=y-3\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{7}{2}\end{matrix}\right.\)

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

5 tháng 7 2016

Áp dụng bất đẳng thức Cauchy-Swartz, ta có : \(P^2=\left(1.\sqrt{x-3}+1.\sqrt{y-4}\right)^2\le\left(1^2+1^2\right)\left(x-3+y-4\right)=2\left(x+y-7\right)\)

\(\Rightarrow P^2\le2\) (vì x+y=8)

\(\Rightarrow P\le\sqrt{2}\) . Dấu đẳng thức xảy ra <=> \(\begin{cases}x\ge3;y\ge4\\x+y=8\\\sqrt{x-3}=\sqrt{y-4}\end{cases}\Leftrightarrow\begin{cases}x=\frac{7}{2}\\y=\frac{9}{2}\end{cases}\)

Vậy Max P = \(\sqrt{2}\Leftrightarrow\begin{cases}x=\frac{7}{2}\\y=\frac{9}{2}\end{cases}\)

4 tháng 9 2019

1.

\(A=\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{4+\sqrt{12}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

2.

\(y=\sqrt{16-x^2}\le4\)

Dau '=' xay ra khi \(x=\sqrt{12}\)

3.

\(y=2+\sqrt{2\left(x-1\right)^2+3}\ge2+\sqrt{3}\)

Dau '=' xay ra khi \(x=1\)

17 tháng 11 2017

\(S=\sqrt{x-3}+\sqrt{y-4}\)

ĐK:\(x\ge 3;y\ge 4\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(S^2=\left(\sqrt{x-3}+\sqrt{y-4}\right)^2\)

\(\le\left(1+1\right)\left(x-3+y-4\right)\)

\(=2\left(x+y-7\right)=2\)

\(\Rightarrow S^2\le2\Rightarrow S\le\sqrt{2}\)