\(\dfrac{2x+3}{x-2}\) tại x =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(f\left(\sqrt{3}+\sqrt{2}\right)=\dfrac{2\sqrt{3}+2\sqrt{2}+3}{\sqrt{3}+\sqrt{2}-2}\)

\(=\dfrac{\left(2\sqrt{3}+2\sqrt{2}+3\right)\left(\sqrt{3}+\sqrt{2}+2\right)}{2\sqrt{6}+1}\)

\(=\dfrac{\left(6+2\sqrt{6}+4\sqrt{3}+2\sqrt{6}+4+4\sqrt{2}+3\sqrt{3}+3\sqrt{2}+6\right)}{2\sqrt{6}+1}\)

\(=\dfrac{\left(16+4\sqrt{6}+7\sqrt{3}+7\sqrt{2}\right)\left(2\sqrt{6}-1\right)}{23}\)

 

31 tháng 5 2018

a ) thay \(x=\sqrt{3}-2\) vào hàm số , 

 ta được : \(y=\left(\sqrt{3}-2\right).\left(\sqrt{3}-2\right)+1\)

                 \(y=3-2\sqrt{3}-2\sqrt{3}+4+1\)

                \(y=8-4\sqrt{3}\)

b ) Để đường thẳng y = 2x - 1 cắt đường thẳng y = 3x + m thì :

      \(\hept{\begin{cases}a\ne a'\\b=b'\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\ne3\\-1=m\end{cases}}\)

Vậy khi m = -1 thì hai đường thẳng trên cắt nhau tại một điểm trên trục tung 

18 tháng 8 2019

a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)

Tương tự hai BĐT còn lại và cộng theo vế suy ra:

\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)

Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó

Is it true?

18 tháng 8 2019

\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)

\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)

\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)

\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)

\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Dấu "=" xảy ra khi \(x=y=1\)

Cau 1:

a: ĐKXĐ: x-2<>0

=>x<>2

b: ĐKXĐ: 1-x>=0

=>x<=1

c: ĐKXĐ: \(x\in R\)

d: ĐKXĐ: 4-3x>=0 và x<>0

=>x<=3/4 và x<>0