Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Áp dụng công thức (a - b).(a+ b) = a.(a+ b) - b.(a+ b) = a2 + ab - ab - b2 = a2 - b2
Ta có
\(M=100^2-99^2+98^2-97^2+...+2^2-1^2\)
M = (100 - 99)(100 + 99) + (98 - 97).(98 + 97) + ...+ (2 - 1)(2+1)
= 100 + 99 + 98 + 97 + ...+ 2 + 1
= (1+100).100 : 2
= 5050
b)
N = (202 - 192 ) + (182 - 172 ) + ...+ (42 - 32 ) + (22 - 12 )
= (20 - 19).(20 + 19) + (18 - 17)(18 + 17) +...+ (4 -3)(4 +3) + (2-1)(2+1) = 39 + 35 + ...+ 7 + 3
N = (39 + 3).10 : 2 = 210
\(\left[18\frac{1}{6}-\left(0,06:7\frac{1}{2}+3\frac{2}{5}\cdot0,38\right)\right]:\left[16-2\frac{2}{3}\cdot4\frac{3}{4}\right]\)
\(< =>\left[18\frac{1}{6}-\left(\frac{1}{125}+\frac{323}{250}\right)\right]:\left[16-\frac{38}{3}\right]\)
\(< =>\left[18\frac{1}{6}-\frac{13}{10}\right]:\frac{10}{3}\)
\(< =>\frac{253}{15}:\frac{10}{3}\)
\(< =>\frac{253}{50}\)
a: \(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-1-\dfrac{15}{17}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\left(\dfrac{12}{17}-1-\dfrac{15}{17}\right)+1\)
\(=\dfrac{-20}{17}+1=\dfrac{-3}{17}\)
b: \(B=\dfrac{-5}{3}\cdot16\dfrac{2}{7}-\dfrac{-5}{3}\cdot28\dfrac{2}{7}\)
\(=\dfrac{-5}{3}\left(16+\dfrac{2}{7}-28-\dfrac{2}{7}\right)=\dfrac{-5}{3}\cdot\left(-12\right)=20\)
c: \(C=25\cdot\dfrac{-1}{27}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)
\(=\dfrac{-25}{27}+\dfrac{1}{5}-1\)
\(=\dfrac{-125+27-135}{135}=\dfrac{-233}{135}\)
N = (202 - 192) + (182 - 172) + ...+ (42 - 32) + (22 - 12)
= (20 - 19).(20 + 19) + (18 - 17)(18 + 17) +...+ (4 -3).(4 +3) + (2-1)(2+1)
= 39 + 35 + ...+ 7 + 3
Số số hạng: (39 - 3): 4 + 1 = 10
=> N = (39 + 3).10 : 2 = 210
+) Ở đây: sd công thức: (a-b).(a+b) = a2 - b2