\(1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Đặt A là tên biểu thức

A=1.2.3+2.3.4+...+n(n+1)(n+2)

4A=1.2.3.4+2.3.4.4+...+n(n+1)(n+2).4

4A=1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ n(n+1)(n+2)(n+3) - (n-1)n(n+1)(n+2)

4A=[1.2.3.4+2.3.4.5+...+n(n+1)(n+2)(n+3)] - [0.1.2.3+1.2.3.4+...+(n-1)n(n+1)(n+2)]

4A=n(n+1)(n+2)(n+3)-0.1.2.3

A=\(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

\(A=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+...+4n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4A=1.2.3.4+1.2.3.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left(n+3-n+1\right)\)

\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n\right)\)

\(\Rightarrow4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

26 tháng 8 2018

Đặt C =\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

             \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

              \(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow C=\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\div2\)

             

13 tháng 1 2018

Đặt tổng trên là A

Có : 3A = 1.2.3+2.3.3+....+n.(n+1).3

= 1.2.3+2.3.(4-1)+......+n.(n+1).[(n+2)-(n-1)]

= 1.2.3+2.3.4-1.2.3+.....+n.(n+1).(n+2)-(n-1).n.(n+1)

= n.(n+1).(n+2)

=> A = n.(n+1).(n+2)/3

Tk mk nha

13 tháng 1 2018

Đặt A=1.2+2.3+...+n(n+1)

3A=1.2.3+2.3.3+...+n(n+1).3

3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n+2)-(n-1)]

3A=1.2.3-0.1.2+2.3.4-1.2.3+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=[1.2.3+2.3.4+...+n(n+1)(n+2)]-[0.1.2+1.2.3+...+(n-1)n(n+1)]

3A=n(n+1)(n+2)-0.1.2

3A=n(n+1)(n+2)

A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

27 tháng 5 2019

Ribi Nkok Ngok''>

28 tháng 5 2019

Gọi A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

4A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

=> 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)[(n+3)-(n-1)]

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)

=n(n+1)(n+2)(n+3)

4A+1=n(n+1)(n+2)(n+3)+1=n4+6.n3+11.n2+6n+1=(n2+3n+1)2

=>\(\sqrt{4A+1}\)=n2+3n+1

9 tháng 9 2018

không biết khó quá

9 tháng 9 2018

chúng ta hãy quy đồng rồi cộng chúng lại với nhau thì sẽ ra kết quả và cậu hãy xem lai kiến thức mới học của cậu đi

23 tháng 11 2018

\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)

\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)

\(H=2+4+6+...+2n\)

??? Cái gì đây, đây là câu hỏi hay câu trả lời ???

4 tháng 11 2019

rảnh ghê ta

24 tháng 12 2017

\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(P=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(P=\left(x^2+5x\right)^2\ge-36\)

\(\Rightarrow GTNN\) của \(P=-36\)

Dấu = sảy ra khi:\(x^2+5x=0\)

.....................\(\Rightarrow x=0\) hoặc \(x=-5\)

4 tháng 5 2019

Câu hỏi của GT 6916 - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo.