Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A là tên biểu thức
A=1.2.3+2.3.4+...+n(n+1)(n+2)
4A=1.2.3.4+2.3.4.4+...+n(n+1)(n+2).4
4A=1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ n(n+1)(n+2)(n+3) - (n-1)n(n+1)(n+2)
4A=[1.2.3.4+2.3.4.5+...+n(n+1)(n+2)(n+3)] - [0.1.2.3+1.2.3.4+...+(n-1)n(n+1)(n+2)]
4A=n(n+1)(n+2)(n+3)-0.1.2.3
A=\(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
\(A=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+...+4n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4A=1.2.3.4+1.2.3.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left(n+3-n+1\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n\right)\)
\(\Rightarrow4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Ta có : 1/ 1.2 + 1/ 2.3 + 1/ 3.4 + ... + 1/ n.( n + 1 ) .
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/n - 1/ n+1 .
= 1 - 1/ n + 1 .
= n+1 / n+1 - 1/ n+1 .
= n/ n+1 .
Đáp sô : n/ n+1
Ta có :
Gọi A=1.2+2.3+3.4+4.5+...+49.50
A=1.2+2.3+3.4+4.5+...+49.50
3.A=3.(1.2+2.3+3.4+4.5+...+49.50)
3.A=1.2.3+2.3.3+3.3.4+3.4.5+...+3.49.50
3.A=1.2.(3-0)+2.3.(3-0)+(3-0).3.4+(3-0).4.5+...+(3-0).49.50
3.A=1.2.3-0+2.3.3-0+3.3.4-0+3.4.5-0+...+3.49.50-0
3.A=1.2.3-0+2.3.4-1.2.3+5.3.4-2.3.4+...+49.50.51-48.49.50
3.A=49.50.51
A=\(\frac{49.50.51}{3}\)49.50.513
A=\(\frac{49.50.17.3}{3}\)49.50.17.33
A=49.50.17
A=41650
Đáp số : A=41650
Gọi A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
4A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
=> 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)[(n+3)-(n-1)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
4A+1=n(n+1)(n+2)(n+3)+1=n4+6.n3+11.n2+6n+1=(n2+3n+1)2
=>\(\sqrt{4A+1}\)=n2+3n+1
Tính: A=1.2+2.3+3.4+...+n(n+1)
=> 3A= 1.2.3+ 2.3.4+ .......+ 3n.( n+1)
=> 3A= 1.2.3 + 2.3.4- 1.2.3 + 3.4.5- 2.3.4 +......+ n(n+ 1) . ( n+ 2)- n. (n-1) .( n+1)
=> 3A= n( n+1) . (n+2)
=> A= \(\dfrac{n\left(n+1\right).\left(n+2\right)}{3}\)
Vậy A = \(\dfrac{n\left(n+1\right).\left(n+2\right)}{3}\) \(⋮\)3
A = 1.2 + 2.3 + 3.4 +...+ n.(n+1)
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>A=[n.(n+1).(n+2)] /3
\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(P=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(P=\left(x^2+5x\right)^2\ge-36\)
\(\Rightarrow GTNN\) của \(P=-36\)
Dấu = sảy ra khi:\(x^2+5x=0\)
.....................\(\Rightarrow x=0\) hoặc \(x=-5\)
Đặt tổng trên là A
Có : 3A = 1.2.3+2.3.3+....+n.(n+1).3
= 1.2.3+2.3.(4-1)+......+n.(n+1).[(n+2)-(n-1)]
= 1.2.3+2.3.4-1.2.3+.....+n.(n+1).(n+2)-(n-1).n.(n+1)
= n.(n+1).(n+2)
=> A = n.(n+1).(n+2)/3
Tk mk nha
Đặt A=1.2+2.3+...+n(n+1)
3A=1.2.3+2.3.3+...+n(n+1).3
3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n+2)-(n-1)]
3A=1.2.3-0.1.2+2.3.4-1.2.3+...+n(n+1)(n+2)-(n-1)n(n+1)
3A=[1.2.3+2.3.4+...+n(n+1)(n+2)]-[0.1.2+1.2.3+...+(n-1)n(n+1)]
3A=n(n+1)(n+2)-0.1.2
3A=n(n+1)(n+2)
A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)