Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

\(C=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
\(C^2=\left(\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\right)^2\)
\(C^2=x^2+2\sqrt{x^2-1}-2\sqrt{\left(x^2+2\sqrt{x^2-1}\right)\left(x^2-2\sqrt{x^2-1}\right)}+x^2-2\sqrt{x^2-1}\)
\(C^2=2x^2-2\sqrt{x^4-2x^2\sqrt{x^2-1}+2x^2\sqrt{x^2-1}-\left(2\sqrt{x^2-1}\right)^2}\)
\(C^2=2x^2-2\sqrt{x^4-4\left(x^2-1\right)}\)
\(C^2=2x^2-2\sqrt{x^4-4x^2+4}\)
\(C=\sqrt{2x^2-2\sqrt{x^4-4x^2+4}}\)
Thay: \(x=\sqrt{5}\) vào C, ta có:
\(C=\sqrt{2\sqrt{5}^2-2\sqrt{\sqrt{5}^4-4\sqrt{5}^2+4}}\)
\(C=\sqrt{10-2\sqrt{25-20+4}}\)
\(C=\sqrt{10-2\sqrt{9}}\)
\(C=\sqrt{10-6}\)
\(C=\orbr{\begin{cases}-2\\2\end{cases}}\)
Mà theo bài ra: \(\sqrt{x^2+2\sqrt{x^2-1}}>\sqrt{x^2-2\sqrt{x^2-1}}\)
\(\Rightarrow\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}>0\)
\(\Rightarrow C=2\)
Ta có: \(x=\frac{3-\sqrt{5}}{2}=\frac{6-2\sqrt{5}}{4}=\frac{\left(\sqrt{5}-1\right)^2}{4}\)=> \(\sqrt{x}=\sqrt{\frac{\left(\sqrt{5}-1\right)^2}{4}}=\frac{\sqrt{5}-1}{2}\)
Do đó: P = \(\frac{\sqrt{x}+1}{\sqrt{x}-2}=\frac{\frac{\sqrt{5}-1}{2}+1}{\frac{\sqrt{5}-1}{2}-2}=\frac{\frac{\sqrt{5}+1}{2}}{\frac{\sqrt{5}-5}{2}}=\frac{\sqrt{5}+1}{\sqrt{5}-5}\)
\(P=\frac{\left(\sqrt{5}+1\right)\left(5+\sqrt{5}\right)}{5-25}=\frac{6\sqrt{5}+10}{-20}=-\frac{3\sqrt{5}+5}{10}\)