\(3x^5+12x^4-8x^3-23x^2-7x+1khix=-2+\sqrt{5}\)

lm nhanh g...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 7 2021

\(x=-2+\sqrt{5}>0\Rightarrow x+2=\sqrt{5}\)

\(\Rightarrow\left(x+2\right)^2=5\Rightarrow x^2+4x=1\)

Ta có:

\(3x^5+12x^4-8x^3-23x^2-7x+1\)

\(=3x^3\left(x^2+4x\right)-8x^3-23x^2-7x+1\)

\(=-5x^3-23x^2-7x+1=-5x\left(x^2+4x\right)-3x^2-7x+1\)

\(=-3x^2-12x+1=-3\left(x^2+4x\right)+1=-3+1=-2\)

21 tháng 7 2018

b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)

\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)

\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)

\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)

Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)

6 tháng 6 2015

+) Tính giá trị của  x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)

=> (-2 + \(\sqrt{5}\)2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1   = 0 

Vậy x2 + 4x - 1  = 0 tại x = -2 + \(\sqrt{5}\)

+) A = 3x3.(x2 + 4x  - 1 ) - 5x3 - 23x2 - 7x + 1

       = 3x3.(x2 + 4x  - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1

      = (3x- 5x).(x2 + 4x  - 1 ) - 3.(x2 + 4x -1) - 2 =  (3x- 5x - 3).(x2 + 4x  - 1 )  - 2

Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2 

+) A =  (3x- 5x - 3).(x2 + 4x  - 1 )  - 2 chia cho (x2 + 4x  - 1 ) dư - 2

22 tháng 7 2019

a) ĐK: x2 - 7x + 8 ≥ 0

Đặt √(x2 - 7x + 8) = a (1)

⇔ a2 + a - 20 = 0

⇔ a = 4 hoặc a = -5

Thay vào (1) là tìm được x, kết hợp với ĐK là xong.

22 tháng 7 2019

b) Dễ chứng minh Vế Trái lớn hơn hoặc bằng 0.

Dấu "=" xảy ra khi x = -4; y=​ 4. ....... là nghiệm của pt

12 tháng 10 2017

a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)

Phương trình đã cho tương đương với hệ

\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)

\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)

Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm

12 tháng 10 2017

c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)

\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)

Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)

Tiếp tục giải ;v

20 tháng 11 2017

\(x+2\sqrt{3}=4\Leftrightarrow x=4-2\sqrt{3}\)

Thay x vào biểu thức B:\(=\left(4-2\sqrt{3}\right)^6-7\left(4-2\sqrt{3}\right)^5-3\left(4-2\sqrt{3}\right)^4-4\left(4-2\sqrt{3}\right)^3+9\left(4-2\sqrt{3}\right)^2-40\left(4-2\sqrt{3}\right)+2035\)

\(=2015\)

1 tháng 6 2021

a, Với \(-4\le x\le4\)

 \(A=\sqrt{x^2+8x+16}+\sqrt{x^2-8x+16}\)

\(=\sqrt{\left(x+4\right)^2}+\sqrt{\left(x-4\right)^2}=\left|x+4\right|+\left|x-4\right|\)

b, \(B=\sqrt{9x^2-6x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(3x\right)^2-2.3x+1}+\sqrt{\left(2x\right)^2-2.2x.3x+3^2}\)

\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|3x-1\right|+\left|2x-3\right|\)