Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\dfrac{x-2}{5}=\dfrac{x}{3}\)
\(\Leftrightarrow3\left(x-2\right)=5x\)
\(\Leftrightarrow3x-6=5x\)
\(\Leftrightarrow5x-3x=6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b, \(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(x+23\right)=3\left(x+40\right)\)
\(\Leftrightarrow4x+92=2x+80\)
\(\Leftrightarrow4x-2x=80-92\)
\(\Leftrightarrow2x=-12\)
\(\Leftrightarrow x=-6\)
c, \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...........+\dfrac{1}{2^{2017}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...........+\dfrac{1}{2^{2016}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2017}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{2017}}\)
d, \(B=1+2+2^2+........+2^{2017}\)
\(\Leftrightarrow2B=2+2^2+2^3+......+2^{2018}\)
\(\Leftrightarrow2B-B=\left(2+2^2+.....+2^{2018}\right)-\left(1+2+....+2^{2017}\right)\)
\(\Leftrightarrow B=2^{2018}-1\)
\(\dfrac{x-2}{5}=\dfrac{x}{3}=>3\left(x-2\right)=5x\)
\(< =>3x-6=5x=>x=-3\)
\(\dfrac{x+23}{x+40}=\dfrac{3}{4}=>4\left(x+23\right)=3\left(x+40\right)\)
\(4x+92=3x+120=>x=28\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )
b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{x-2}{5}=\dfrac{x}{3}\)
\(\Leftrightarrow\left(x-2\right)3=5x\)
\(\Leftrightarrow3x-6=5x\)
\(\Leftrightarrow5x-3x=-6\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
Vậy .....
b, \(B=1+2+2^2+..........+2^{2017}\)
\(\Leftrightarrow2B=2+2^2+.......+2^{2018}\)
\(\Leftrightarrow2B-B=\left(2+2^2+......+2^{2018}\right)-\left(1+2+......+2^{2017}\right)\)
\(\Leftrightarrow B=2^{2018}-1\)
c, \(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(x+23\right)=3\left(x+40\right)\)
\(\Leftrightarrow4x+92=3x+120\)
\(\Leftrightarrow4x-3x=120-92\)
\(\Leftrightarrow x=28\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: =>5x=3x-6
=>2x=-6
hay x=-3
b: \(\Leftrightarrow\left(x-3\right)^2=4\cdot5^2=100\)
=>x-3=10 hoặc x-3=-10
=>x=13 hoặc x=-7
c: \(\left|x^3+1\right|+2\ge2\forall x\)
Dấu '=' xảy ra khi x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
đó giúp mk đi mà
à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đó
giúp mk nha
cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3^{x+1}.15=135\)
\(\Rightarrow3^{x+1}=9\)
\(\Rightarrow3^{x+1}=3^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
b) \(x+2x+2^2x+....+2^{2016}x=2^{2017}-1\\ \Rightarrow x\left(2+2^2+...+2^{2016}\right)=2^{2017}-1\\ \Rightarrow x\left(2^{2017}-2\right)=2^{2017}-1\)
c) \(x\left(x-1\right)+\left(x-1\right)^2=0\\ \Rightarrow x\left(x-1\right)+\left(x-1\right)\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+\left(x-1\right)\right)=0\\ \Rightarrow\left(x-1\right)\left(2x-1\right)=0\\ \Rightarrow\begin{cases}x-1=0\\2x-1=0\end{cases}\)
d) \(2^2.2^5\le2^{x-5}\le2^{10}\\ \Rightarrow2^7\le2^{x-5}\le2^{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3) \(\left(x+\dfrac{1}{5}\right)^2\) + \(\dfrac{17}{25}\) = \(\dfrac{26}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{26}{25}\) - \(\dfrac{17}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{9}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{3}{5}.\dfrac{3}{5}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\left(\dfrac{3}{5}\right)^2\)
=> \(x\) + \(\dfrac{1}{5}\) = \(\dfrac{3}{5}\)
=> \(x\) = \(\dfrac{3}{5}\) - \(\dfrac{1}{5}\)
=> \(x\) = \(\dfrac{2}{5}\)
4) -1\(\dfrac{5}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-24}{27}\)
=> \(\dfrac{-32}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{9}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-32}{27}\) - \(\dfrac{-8}{9}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{27}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\left(\dfrac{-2}{3}\right)^3\)
=> \(3x-\dfrac{7}{9}=\dfrac{-2}{3}\)
=> \(3x=\dfrac{-2}{3}+\dfrac{7}{9}\)
=> \(3x=\dfrac{1}{9}\)
=> \(x=\dfrac{1}{9}:3\)
=> \(x=\dfrac{1}{27}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 7:
\(S=\left|x+2\right|+\left|2y-10\right|+2012\ge2012\)
Dấu '=' xảy ra khi x=-2 và y=5
Bài 8:
a: Để đây là sốnguyên thì \(x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
b: Để đây là số nguyên thì \(2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)