\(Q=x^2+xy-5x-5y\)  với x=  - 5 , y= -8

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

\(Q=x^2+xy-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

\(Thay\)\(x=-5;y=-8\)vào biểu thức Q đã rút gọn ta có: \(Q=\left(-5-8\right)\left(-5-5\right)=130\)

20 tháng 10 2018

\(Q=x.\left(x+y\right)-5.\left(x+y\right)\)

\(Q=-5.\left[-5+\left(-8\right)\right]-5.\left[\left(-5\right)+\left(-8\right)\right]\)

\(Q=-5.\left(-13\right)-5.\left(-13\right)\)

\(Q=-13.\left[-5-5\right]\)

\(Q=130\)

2 tháng 7 2019

\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(=9x\)

Thay x=15 \(\Rightarrow A=9.15=135\)

4 tháng 7 2019

\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)

\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)

\(=19x^2y^2-11xy^3-8x^3\)

Thay x=1/2 ; y=2 vào B \(\Rightarrow19.\left(\frac{1}{2}\right)^2.2^2-11\cdot\frac{1}{2}\cdot2^3-8\cdot\left(\frac{1}{2}\right)^3\)

\(=19-44-1\)

\(=-26\)

20 tháng 10 2018

\(P=xy-4y-5x+20=y\left(x-4\right)-5\left(x-4\right)=\left(x-4\right)\left(y-5\right)\)

\(Thay\)\(x=14;y=5,5\)vào biểu thức P đã rút gọn ta có:\(P=\left(14-4\right)\left(5,5-5\right)=5\)

20 tháng 10 2018

\(P=y.\left(x-4\right)-5.\left(x-4\right)\)

\(P=\left(x-4\right).\left(y-5\right)\)

\(P=\left(14-4\right).\left(5,5-5\right)\)

\(P=10.0,5=5\)

17 tháng 5 2017

* Với M

Ta có M= x2+y2 = x2+y2+2xy-2xy=(x+y)- 2xy= (-9)2 - 2.18 = 81- 36 = 45

* Với N 

Ta có M = x4 + y4 = (x2)2 + (y2)2 + 2(xy)2 - 2(xy)2 = (x2+y2)2 + 2 (xy)2= 452 + 2. 182= 2673

* Với T 

Ta có T = x2 - y2  => chịu

14 tháng 7 2018

x^2 +y^2 =x^2 + 2xy + y^2 - 2xy

(x+y)^2 - 2xy

(-9)^2-2*18

81 - 36

45

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

8 tháng 12 2019

\(5x^2+5y^2+8xy+2x-2y+2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)

\(\Rightarrow x=-1;y=1\)

Khi đó:

\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)

\(=1\)

4 tháng 6 2018

b)\(C=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)

Để C đạt giá trị nhỏ nhất => 1/x-5 phải đạt giá trị nhỏ nhất

=> 1/x-5=-1

=>x-5=-1

=>x=4

Giá trị nhỏ nhất của C là : 5 - 1 = 4 <=> x = 4

2 tháng 7 2018

a, \(A=x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi x=-1/2

Vậy Amin=3/4 khi x=-1/2

b,\(B=2x^2-5x-2\)

\(\Rightarrow2B=4x^2-10x-4=\left(4x^2-10x+\frac{25}{4}\right)-\frac{41}{4}=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\)

Vì \(\left(2x-\frac{5}{2}\right)^2\ge0\Rightarrow2B=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\Rightarrow B\ge-\frac{41}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmin=-41/8 khi x=5/4

c,\(C=x^2+5y^2+2xy-y+3=\left(x^2+2xy+y^2\right)+\left(4y^2-y+\frac{1}{16}\right)+\frac{47}{16}=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\)

\(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(2y-\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2\ge0\)

\(\Rightarrow C=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\ge\frac{47}{16}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{8}\\y=\frac{1}{8}\end{cases}}}\)

Vậy Cmin=47/16 khi x=-1/8,y=1/8