Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kiểm tra lại đề. Theo mình
\(H=5\left(\sqrt{2+\sqrt{3}}-\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\right)^2\)
\(B=\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3+\sqrt{5}}=3-\sqrt{5}\)
\(C=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{2}\)
\(=\frac{-2\sqrt{3}}{2}=-\sqrt{3}\)
\(D=\frac{2}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)
\(=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(3-\sqrt{3}\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)
\(=\sqrt{3}-1-\left(\sqrt{3}+2\right)-\left(3-\sqrt{3}\right)\)
\(=\sqrt{3}-1-\sqrt{3}-2-3+\sqrt{3}=\sqrt{3}-6\)
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
a) \(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2\sqrt{3}+2-\sqrt{3}\)
\(=\left(2\sqrt{3}-\sqrt{3}\right)+2\)
\(=\sqrt{3}+2\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(=\frac{1+\sqrt{5}}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{1+\sqrt{5}}\)
\(=\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)
\(=\frac{\left(\sqrt{5}+1\right)^2+\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)
\(=\frac{12}{4}=3\)
c) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{14}{1}=14\)
Đặt a = \(\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}+\sqrt{2}-\sqrt{\frac{5+\sqrt{5}}{2}}}\)
\(a^2=4+2\sqrt{4-\frac{5+\sqrt{5}}{2}}=4+\sqrt{6-2\sqrt{5}}\)
\(=4+\sqrt{\left(\sqrt{5}-1\right)^2}=3+\sqrt{5}\Rightarrow a=\sqrt{3}+\sqrt{5}\)
\(\Rightarrow\)\(x=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-1\)
\(=\sqrt{\frac{6+2\sqrt{5}}{2}}-\sqrt{\frac{6-2\sqrt{5}}{2}}-1=\frac{\sqrt{5}+1}{\sqrt{2}}-\frac{\sqrt{5}-1}{\sqrt{2}}-1\)
\(=\sqrt{2}-1\Rightarrow x=\sqrt{2}-1\Rightarrow x=x^2+2x-1=0\)
\(B=2x^3+3x^2-4x+2\)
\(B=2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)+1=1\)
Tham khao:
2,Biết x+y=5x+y=5 và x+y+x2y+xy2=24x+y+x2y+xy2=24 Giá trị của biểu thức x3+y3x3+y3 là
3,Nếu đa thức x2+px2+qx2+px2+q chia hết cho đa thức x2−2x−3x2−2x−3 thì khi đó giá trị của
2) x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8
(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4
x3+y3=(x+y)(x2−xy+y2)=5(17,4−3,8)=68
3) x4−2x−3=(x+1)⋅(x−3)x4−2x−3=(x+1)⋅(x−3)
Để đa thức x4+px2+q⋮x2−2x−3x4+px2+q⋮x2−2x−3 => Có hai nghiệm của x là x = -1 hoặc x = 3.
+) Xét x = -1 : x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0
⇒1+p+q=0→q=−1−p⇒1+p+q=0→q=−1−p (1)
+) Xét x = 3 : x4+px2+q=0⇒34+p⋅32+q=0x4+px2+q=0⇒34+p⋅32+q=0
⇒81+p⋅9+q=0⇒81+p⋅9+q=0 (2)
Thế (1) vào (2) ta có : 81+9⋅p−1−p=081+9⋅p−1−p=0
⇔80+8p=0⇔80+8p=0
⇔p=−10⇔p=−10
Vậy giá trị của p là -10.
\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}=\frac{\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}{\left(\sqrt{3+\sqrt{5}}\right)^2}+\frac{\sqrt{\left(3+\sqrt{5}\left(3-\sqrt{5}\right)\right)}}{\left(\sqrt{3-\sqrt{5}}\right)^2}\)
\(=\frac{\sqrt{4}}{3+\sqrt{5}}+\frac{\sqrt{4}}{3-\sqrt{5}}=\frac{2.\left(3-\sqrt{5}\right)+2.\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\frac{12}{4}=3\)
\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\) + \(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
= \(\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{9-5}}\)+ \(\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{9-5}}\)
= \(\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{4}}\)+ \(\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{4}}\)
= \(\frac{3-\sqrt{5}}{2}\)+ \(\frac{3+\sqrt{5}}{2}\)
= \(\frac{6}{2}\)
=3
#mã mã#