K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

Thay x = 101; y = 100; z = 98 vào biểu thức P, ta có:

P = 101. 100 + 100. 98 + 98. 101 - 100 - 98 - 2

   = 10100 + 9800 + 9898 - 100 - 100

   = 29798 - 200

   = 29598

Vậy với x = 101; y = 100; z = 98 thì biểu thức P = 29598

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Lời giải:

$P=(xy+yz+xz)^2+(x^2-yz)^2+(y^2-zx)^2+(z^2-xy)^2$
$=x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2+x^4+y^2z^2-2x^2yz+y^4+z^2x^2-2xzy^2+z^4+x^2y^2-2xyz^2$

$=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$

$=(x^2+y^2+z^2)^2=10^2=100$

17 tháng 4 2019

Ta có

C = xyz – (xy + yz + zx) + x + y + z – 1

= (xyz – xy) – (yz – y) – (zx – x) + (z – 1)

= xy(z – 1) – y(z – 1) – x(z – 1) + (z – 1)

= (z – 1)(xy – y – x + 1)

= (z – 1).[y(x – 1) – (x – 1)]

= (z – 1)(y – 1)(x – 1)

Với x = 9; y = 10; z = 101 ta có

C = (101 – 1)(10 – 1)(9 – 1) = 100.9.8 = 7200

Đáp án cần chọn là: C

22 tháng 11 2016

 với mọi x, y, z ta có: 
(x-y)^2 +(y-z)^2+ (z-x)^2>=0 
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 
<=>(x+y+z)^2 >= 3(x+y+z) 
<=>[(x+y+z)^2]/3 >= xy+yz+ zx 
=>xy +yz + zx <=3 
dấu = xảy ra khi x=y=z =1 

=> Max P=3

20 tháng 12 2016

x=1:z=1:y=1.tích cho tui nhé!hi!hi!hi!!!!!!!!!!!!!!!

23 tháng 4 2017

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1

25 tháng 5 2018

Ta có BĐT đúng sau:

x2 + y2 + z2 >= xy + yz + zx

<=> (x + y + z)2 >= 3(xy + yz + zx)

<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)

NM
4 tháng 12 2020

ta có \(xy\le\left(\frac{x+y}{2}\right)^2\) và \(yz+xz=z\left(x+y\right)\le\frac{z^2+\left(x+y\right)^2}{2}\)

\(\Rightarrow5=xy+yz+xz\le\left(\frac{x+y}{2}\right)^2+\frac{z^2+\left(x+y\right)^2}{2}=\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\)

Xét \(3x^2+3y^2+z^2\ge\frac{3}{2}\left(x+y\right)^2+z^2=2\left(\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\right)\ge2\cdot5=10\)

dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\z=x+y\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\pm1\\z=\pm2\end{cases}}}\)

11 tháng 2 2017

Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk