\(A=x^2+4xy-3y^3\) với \(\left|x\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2015

A = |x|2 + 4xy - 3y. |y|2 = 25 + 4xy - 3y 

+ Nếu x = 5; y = 1 => A = 25 + 4.5.1 - 3.1 = 42

+ Nếu x = 5; y = -1 => A = 25 + 4.5. (-1) - 3.(-1) = 8

+ Nếu x = -5 ; y = 1 => A = 25 + 4.(-5).1 - 3.1 = 2

+ Nếu x = -5; y = -1 => A = 25 + 4.(-5). (-1) - 3.(-1) = 48

4 tháng 7 2018

\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)

\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)

\(=2x^2-10xy+8y-2x^2-14xy\)

\(=10xy+8y-14xy\)

\(=-4xy+8y\)

\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)

\(=-4.\frac{-1}{2}+6\)

\(=2+6=8\)

4 tháng 7 2018

\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)

\(=-2y-2xy\)

thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có

\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)

nếu có sai bn thông cảm

4 tháng 7 2018

\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)

\(=2x^2-3y-4xy+8y-2x^2+3y+4xy\)

\(=-2y-2xy\)

Thay x,y ta có:

\(-2y-2xy=-2\left(\frac{3}{4}\right)-2\left(\frac{-2}{3}.\frac{3}{4}\right)\)

\(-2y-2xy=\frac{-3}{2}-2.\frac{-1}{2}\)

\(-2y-2xy=\frac{-3}{2}-\left(-1\right)\)

\(-2y-2xy=\frac{-3}{2}+1=\frac{-3}{2}+\frac{2}{2}=\frac{-1}{2}\)

Vậy biểu thức trên có giá trị bằng \(\frac{-1}{2}\)

4 tháng 7 2018

khó quá bạn ơi !

5 tháng 4 2019

=-1/2x^2+5x^2y^3-8x^3y^2-5x^2y^3+7x^3y^2-6x^2-5/3y

=(-1/2x^2+6x^2)+(5x^2y^3-5x^2y^3)+(-8x^3y^2-7x^3y^2)+5/3y

=11/2x^2+0-15x^3y^2+5/3y

=11/2x^2-15x^3y^2+5/3y

thay x=-1/2 , y=25 vào giá trị biểu thức M ta đc

       11/2.(-1/2)^2-15.(-1/2)^3.25^2+5/3.25=7273/6

   vậy tại x=-1/2 , y=25 vào giá trị biểu thức M có giá trị là 7273/6

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

8 tháng 6 2017

\(\left(x-3y\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=0\Rightarrow\hept{\begin{cases}x-3y=0\\y-1=0\\z+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3y\\y=1\\z=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=1\\z=-2\end{cases}}}\)

Thế vào A ta được \(2\left(3\right)+2\left(1\right)+\left(-2\right)=6\)

9 tháng 11 2019

Ta có : \(\hept{\begin{cases}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2018}\ge0\forall y\end{cases}\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2018}\ge0\forall x,y}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2018}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\2y=1\end{cases}}}\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Khi đó : \(M=11.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2=\frac{11.4}{2}+\frac{4.2}{4}=22+2=24\)

Vậy M = 24