\(A=\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

ta có: A3=\(6\sqrt{3}+10-6\sqrt{3}+10-3\sqrt[3]{\left(6\sqrt{3}+10\right)\left(6\sqrt{3}-10\right)}.\left(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\right)\)

=\(20-3.\sqrt[3]{8}.A\)=\(20-6A\)

do đó A3=20-6A↔A3+6A-20=0↔(A2+2A+10)(A-2)=0

dễ thấy A2+2A+10>0→A=2

b) giống a)

c)giống b)

10 tháng 8 2017

1)

dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)

ta co b=2-a

a^3+b^3=x+1+7-x=8 

a^3+b^3=a^3+b^3+3ab(a+b)

ab(a+b)=0

suy ra a=0 hoac b=0 hoac a=-b

<=> x=-1; x=7 

a=-b

a^3=-b^3

x+1=x+7 (vo li nen vo nghiem)

cau B tuong tu

2)

tat ca cac bai tap deu chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so

dang nay co 2 cach 

C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)

B^3=10-9B

B=1 cach nay nhanh nhung kho nhin

C2 dat an

\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)

de thay B=a+b

a^3+b^3=10

ab=-3

B^3=10-9B

suy ra B=1

tuong tu giai cac cau con lai.

10 tháng 8 2017

Bài 1:

a. Đặt \(a=\sqrt[3]{x+1}\)\(b=\sqrt[3]{7-x}\). Ta có:

\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)

\(\Leftrightarrow x=-1\)hoặc \(x=7\)

3 tháng 7 2017

\(P=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(P=\dfrac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{99}+\sqrt{100}\right)\left(\sqrt{100}-\sqrt{99}\right)}\)

\(P=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}\)

\(P=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(P=-1+\sqrt{100}=-1+10=9\)

3 tháng 7 2017

Áp dụng:\(\dfrac{1}{\sqrt{a}+\sqrt{a+1}}=\dfrac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\dfrac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\)

21 tháng 10 2016

A = \(\sqrt[3]{10+6\sqrt{3}}+\sqrt[3]{10-6\sqrt{3}}\)

<=> A3 = 20 - 3×2A

<=> A3 + 6A - 20 = 0

<=> A = 2

21 tháng 10 2016

2 câu còn lại làm tương tự 

a: \(D=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

b: \(E=\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=18+6\sqrt{5}-6\sqrt{5}-10=8\)

11 tháng 8 2017

a/ \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\) \(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}=-2\sqrt{3}\).

b/ \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\Rightarrow A^2=8+2\sqrt{4^2-\left(\sqrt{10+2\sqrt{5}}\right)^2}=8+2\sqrt{6-2\sqrt{5}}\) \(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{5}+1\)

c/ \(B=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\Rightarrow\sqrt{2}B=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\sqrt{5}+2=2\Rightarrow B=\sqrt{2}\)

6 tháng 8 2017

a. \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

= \(3-\sqrt{6} +2\sqrt{6}-3\) = \(\sqrt{6}\)

b. \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)

= \(\sqrt{8\sqrt{3}}-2.5\sqrt{12}+4\sqrt{8\sqrt{3}}\)

= \(5\sqrt{8\sqrt{3}}-5\sqrt{4.\sqrt{12}}=5\sqrt{8\sqrt{3}}-5\sqrt{4.2\sqrt{3}}\)

= \(5\sqrt{8\sqrt{3}}-5\sqrt{8\sqrt{3}}=0\)

c. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\) = \(\sqrt{2}.\sqrt{2-\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}.\left(\sqrt{3}+1\right)\)

=\(\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

= 3 - 1 = 2

d. \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

= \(\dfrac{\sqrt{2}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)}{\sqrt{2}}=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

= \(\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\) = \(\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}\)

= \(\dfrac{2\sqrt{5}}{\sqrt{2}}\)= \(\sqrt{10}\)

e. \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)+\left(\sqrt{2}-1\right)^2\right)\)\(2.\left(3+2\sqrt{2}+2-1+3-2\sqrt{2}\right)=2.7=14\)

31 tháng 7 2018

Căn bậc hai

14 tháng 7 2017

a) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|=\left(\sqrt{3}+\sqrt{2}\right)-\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|=\left(\sqrt{5}-\sqrt{2}\right)-\left(\sqrt{5}+\sqrt{2}\right)\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}=-2\sqrt{2}\)

c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|=\left(\sqrt{3}-1\right)+\left(\sqrt{3}+1\right)\)

\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

14 tháng 7 2017

d) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=2\sqrt{6+2\sqrt{5}}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=2\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{5}-2=2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)

a: \(\left(3+\sqrt{5}\right)^2=14+6\sqrt{5}\)

\(\left(2\sqrt{2}+\sqrt{6}\right)^2=14+4\sqrt{12}\)

mà \(6\sqrt{5}< 4\sqrt{12}\)

nên \(3+\sqrt{5}< 2\sqrt{2}+\sqrt{6}\)

c: \(\sqrt{14}-\sqrt{13}=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)

\(\sqrt{12}-\sqrt{11}=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)

mà \(\dfrac{1}{\sqrt{14}+\sqrt{13}}< \dfrac{1}{\sqrt{12}+\sqrt{11}}\)

nên \(\sqrt{14}-\sqrt{13}< \sqrt{12}-\sqrt{11}\)