\(M=\dfrac{\left(a+b\right)\left(b+c\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

\(M=\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a-b\right)\left(b-c\right)}.\dfrac{\left(b+c\right)\left(c+a\right)}{\left(b-c\right)\left(c-a\right)}.\dfrac{\left(c+a\right)\left(a+b\right)}{\left(c-a\right)\left(a-b\right)}\) (loạn mắt quá !!! bucquabucquabucqua)

\(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c-a\right)\left(b+c\right)\left(c+a\right)\left(a-b\right)\left(c+a\right)\left(a+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Thôi để bữa sau a làm (đau mắt quá :)))


23 tháng 12 2018

1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

24 tháng 6 2017

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\dfrac{a+b}{a}\times\dfrac{b+c}{b}\times\dfrac{a+c}{c}=8\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)

~*~*~*~*~

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)

\(=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\) (1)

\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{b}{b+c}-\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{c}{c+a}-\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\left(1-\dfrac{b}{b+c}\right)+\dfrac{b}{b+c}\left(1-\dfrac{c}{c+a}\right)+\dfrac{c}{a+c}\left(1-\dfrac{a}{a+b}\right)\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\times\dfrac{c}{b+c}+\dfrac{b}{b+c}\times\dfrac{a}{a+c}+\dfrac{c}{a+c}\times\dfrac{b}{a+b}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}=\dfrac{3}{4}\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)=\dfrac{3}{4}\times8abc\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)+2abc=8abc\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\) luôn đúng

=> (1) đúng

24 tháng 6 2017

Bạn cũng có thể giải bằng cách đặt \(x=\dfrac{a}{a+b};y=\dfrac{b}{b+c};z=\dfrac{c}{a+c}\).

6 tháng 1 2019

\(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}=a+b+c\)

\(\Leftrightarrow\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=a+b+c\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{a+b+c}{abc}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{a}\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Thay vào A r tính thôi

6 tháng 1 2019

cảm ơn

14 tháng 5 2017

VP = \(\dfrac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\dfrac{\left(b-c\right)^2}{\left(b+a\right)\left(c+a\right)}+\dfrac{\left(c-a\right)^2}{\left(c+b\right)\left(a+b\right)}\)

\(=\left(a-b\right).\dfrac{\left(a+c\right)-\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}+\left(b-c\right).\dfrac{\left(b+a\right)-\left(c+a\right)}{\left(b+a\right)\left(c+a\right)}+\left(c-b\right).\dfrac{\left(c+b\right)-\left(a+b\right)}{\left(c+b\right)\left(a+b\right)}\)

\(=\left(a-b\right).\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+\left(b-c\right)\left(\dfrac{1}{c+a}-\dfrac{1}{b+a}\right)+\left(c-a\right).\left(\dfrac{1}{a+b}-\dfrac{1}{c+b}\right)\)

\(=\left(a-b\right).\dfrac{1}{b+c}-\left(a-b\right).\dfrac{1}{a+c}+\left(b-c\right).\dfrac{1}{c+a}-\left(b-c\right).\dfrac{1}{b+a}+\left(c-a\right).\dfrac{1}{a+b}-\left(c-a\right).\dfrac{1}{c+b}\)

\(=\left(2a-b-c\right).\dfrac{1}{b+c}+\left(2b-c-a\right).\dfrac{1}{c+a}+\left(2c-a-b\right).\dfrac{1}{a+b}\)

\(=\dfrac{2a}{b+c}-\left(b+c\right).\dfrac{1}{b+c}+\dfrac{2b}{c+a}-\left(c+a\right).\dfrac{1}{c+a}+\dfrac{2c}{a+b}-\left(a+b\right).\dfrac{1}{a+b}\)

\(=2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)-3\left(đpcm\right)\)

15 tháng 5 2017

\(VT=\dfrac{2a^3-a^2b-a^2c-ab^2-ac^2+2b^3-b^2c-bc^2+2c^3}{(a+b)(b+c)(c+a)} \)

\(\\=\dfrac{a^3+a^2b-2a^2b-2ab^2+ab^2+b^3+b^3+b^2c-2b^2c-2bc^2+bc^2+c^3+c^3+c^2a-2c^a+2ca^2-ca^2+a^3}{(a+b)(b+c)(c+a)}\)

\(\\=\dfrac{(a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)}{(a+b)(b+c)(c+a)}\)

\(\\\Rightarrow VT=\dfrac{(a-b)^2}{(c+a)(b+c)}+\dfrac{(b-c)^2}{(c+a)(a+b)}+\dfrac{(c-a)^2}{(a+b)(b+c)}=VP\)
6 tháng 4 2018

Ta có : \(A=\dfrac{bc}{\left(a-b\right)\left(a-c\right)}-\dfrac{ca}{\left(b-c\right)\left(a-b\right)}+\dfrac{ab}{\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{bc\left(b-c\right)-ca\left(a-c\right)+ab\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

Đặt \(B=bc\left(b-c\right)-ca\left(a-c\right)+ab\left(a-b\right)\)

\(=b^2c-bc^2-a^2c+ac^2+a^2b-ab^2\)

\(=a\left(c^2-b^2\right)-b\left[\left(c^2-b^2\right)+\left(b^2-a^2\right)\right]+c\cdot\left(b^2-a^2\right)\)

\(=\left(c-b\right)\left(c+b\right)\left(a-b\right)-\left(a-b\right)\left(a+b\right)\left(c-b\right)\)

\(=\left(c-b\right)\left(a-b\right)\left(c-a\right)=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

\(\Rightarrow A=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

Vậy A=1

2 tháng 3 2017

A=\(\dfrac{1}{\left(a-b\right)\left(a-c\right)}\)\(-\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)\(+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)

<=>A=\(\dfrac{b-c-\left(a-c\right)+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

<=> A=\(\dfrac{0}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)<=> A=0

2 tháng 3 2017

Đặt: \(a-b=x\)

\(a-c=y\)

\(b-c=z\)

Ta có: \(A=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}\)

\(=\dfrac{1}{xy}-\dfrac{1}{xz}+\dfrac{1}{yz}\)

\(=\dfrac{xyz^2-xy^2z+x^2yz}{x^2y^2z^2}\)

\(=\dfrac{xyz\left(z-y+x\right)}{x^2y^2z^2}\)

\(=\dfrac{z-y+x}{xyz}\)

Thay \(a-b=x;a-c=y;b-c=z\) vào biểu thức \(\dfrac{z-y+x}{xyz}\), ta được:

\(\dfrac{\left(b-c\right)-\left(a-c\right)+\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

= \(\dfrac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

= 0

Vậy:\(A=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}=0\)