\(\frac{2^2}{1.3}+\frac{3^2}{2.4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

\(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{98.100}{99^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{98.100}{99.99}\)

\(=\frac{1.2.3...98}{2.3.4...99}.\frac{3.4.5...100}{2.3.4...99}\)

\(=\frac{1}{99}.\frac{100}{2}\)

\(=\frac{1}{99}.50=\frac{50}{99}\)

30 tháng 4 2016

\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}......\frac{10^2}{9.11}=\frac{\left(1.2.3.....10\right)^2}{\left(1.2.3.....9\right).\left(3.4.5....9.10.11\right)}=\frac{\left(1.2.3....10\right)^2}{\left(1.2\right)\left(3.4.5.....9\right)^2\left(10.11\right)}=\frac{\left(1.2.10\right)^2}{\left(1.2\right).\left(10.11\right)}=\frac{1.2.10}{11}=\frac{20}{11}\)

5 tháng 4 2018

a, \(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{999^2}{998.1000}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{999.999}{998.1000}\)

\(=\frac{2.3.4...999}{1.2.3...998}.\frac{2.3.4...999}{3.4.5...1000}\)

\(=\frac{999}{1}.\frac{2}{1000}\)

\(=\frac{999.2}{1000.1}=\frac{999.2}{500.2.1}\)

\(=\frac{999}{500}\)

Vậy \(A=\frac{999}{500}\)

chúc bạn học giỏi

5 tháng 4 2018

cảm ơn bạn nhiều nha

30 tháng 3 2016

\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}=\frac{2.3.4.5}{1.2.3.4}.\frac{2.3.4.5}{3.4.5.6}=5.\frac{1}{3}=\frac{5}{3}\)

29 tháng 6 2020

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

B = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}=\frac{\left(2.3.4.5\right).\left(2.3.4.5\right)}{\left(1.2.3.4\right).\left(3.4.5.6\right)}=\frac{5.2}{1.6}=\frac{5}{3}\)

C = \(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{74}{305}\)

29 tháng 6 2020

Bài làm:

1) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

2) \(B=\frac{2^2.3^2.4^2.5^2}{1.2.3^2.4^2.5.6}=\frac{2.5}{6}=\frac{5}{3}\)

3) \(C=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)

\(C=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{61-59}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)

13 tháng 7 2017

\(C=\left[1+\frac{1}{1\cdot3}\right]\left[1+\frac{1}{2\cdot4}\right]...\left[1+\frac{1}{2014\cdot2016}\right]\)

\(=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot...\cdot\frac{4060225}{4060224}\)

\(=\frac{2\cdot2}{1\cdot3}\cdot\frac{3\cdot3}{2\cdot4}\cdot\frac{4\cdot4}{3\cdot5}\cdot...\cdot\frac{2015\cdot2015}{2014\cdot2016}\)

\(=\frac{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot2015\cdot2015}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot2014\cdot2016}\)

Để ý kĩ thì các thừa số dưới mẫu so với trên tử giống nhau chỉ khác 2016 nên C bằng:

C = 2*2*3*3*4*4*...*2015*2015/1*2*3*3*4*4*5*5*...*2015*2015*2016 = 1/2016

13 tháng 7 2017

Ta có : (a-1)(a+1)=a2+a-a-1=a2-1

      \(\Rightarrow\)(a-1)(a+1)+1=a2

Từ đó ta có :

\(C=\frac{2^2}{1.3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot...\cdot\frac{2015^2}{2014\cdot2016}\)

\(\Rightarrow\)\(C=\left(\frac{2\cdot3\cdot4\cdot...\cdot2015}{1\cdot2\cdot3\cdot...\cdot2014}\right)\cdot\left(\frac{2\cdot3\cdot4\cdot...2015}{3\cdot4\cdot5\cdot...\cdot2016}\right)\)

\(\Rightarrow\)\(C=\frac{2015}{1}\cdot\frac{1}{2016}\)

\(\Rightarrow\)\(C=\frac{2015}{2016}\)