K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

a) Thay x=87 và y=13 vào biểu thức ta có:

x2-y2=(x-y)(x+y)=(87-13)(87+13)=74.100=7400

b) Thay x=101 và biểu thức ta có:

x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000

c) Thay x=97 vào biểu thức ta có:

x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000

18 tháng 7 2017

a, Theo bài ra ta có:

\(=x^3-x-2x+2\)

\(=x\left(x^2-1\right)-2\left(x-1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x-2\right)\)

b, theo bài ra ta có:

\(=x^3-3x^2-\left(2x^2-6x\right)-\left(3x-9\right)\)

\(=x^2\left(x-3\right)-2x\left(x-3\right)-3\left(x-3\right)\)

\(=\left(x^2-2x-3\right)\left(x-3\right)\)

c,Theo bài ra ta có:

\(=x^3+5x^2+3x^2+15x+2x+10\)

\(=x^2\left(x+5\right)+3x\left(x+5\right)+2\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2+3x+2\right)\)

\(=\left(x+5\right)\left(x^2+x+2x+2\right)=\left(x+5\right)\left(x\left(x+1\right)+2\left(x+1\right)\right)\)

\(=\left(x+5\right)\left(x+1\right)\left(x+2\right)\)

CHÚC BẠN HỌC TỐT...........

18 tháng 7 2017

a) \(x^3-3x+2\)

= \(x^3-x^2+x^2-x-2x+2\)

= \(x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2+x-2\right)\)

= \(\left(x-1\right)\left(x^2+2x-x-2\right)\)

= \(\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

= \(\left(x-1\right)\left(x+2\right)\left(x-1\right)\)

= \(\left(x-1\right)^2\left(x+2\right)\)

b) \(x^3-5x^2+3x+9\)

= \(x^3+x^2-6x^2-6x+9x+9\)

= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2-6x+9\right)\)

= \(\left(x+1\right)\left(x-3\right)^2\)

c) \(x^3+8x^2+17x+10\)

= \(x^3+x^2+7x^2+7x+10x+10\)

= \(x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2+7x+10\right)\)

= \(\left(x+1\right)\left(x^2+2x+5x+10\right)\)

= \(\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)

= \(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)

d) \(x^3-3x^2+6x+4\)

Câu này đúng là sai đề rồi, mình sửa + làm bên dưới:

\(x^3+3x^2+6x+4\)

= \(x^3+x^2+2x^2+2x+4x+4\)

= \(x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2+2x+4\right)\)

Học tốt nhé :))

18 tháng 6 2017

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

= \(z^2\)

18 tháng 6 2017

Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2

=[(x+y+z)-(x+y)]2=z2

22 tháng 9 2017

Sao bạn không tự làm bớt đi , bài dễ mà

10 tháng 9 2018

a) \(x^2-6x+3\)

\(=x^2-2.x.3+9-6\)

\(=\left(x-3\right)^2-\left(\sqrt{6}\right)^2\)

\(=\left(x-3-\sqrt{6}\right)\left(x-3+\sqrt{6}\right)\)

b) \(9x^2+6x-8\)

\(=\left(3x\right)^2+2.3x+1-9\)

\(=\left(3x+1\right)^2-3^2\)

\(=\left(3x+1-3\right)\left(3x+1+3\right)\)

\(=\left(3x-2\right)\left(3x+4\right)\)

10 tháng 9 2018

d) \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x+3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

e) \(x^3+4x^2-29x+24\)

\(=x^3+8x^2-4x^2-32x+3x+24\)

\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)

\(=\left(x+8\right)\left(x^2-4x+3\right)\)

\(=\left(x+8\right)\left(x^2-3x-x+3\right)\)

\(=\left(x+8\right)\left[x\left(x-3\right)-\left(x-3\right)\right]\)

\(=\left(x+8\right)\left(x-3\right)\left(x-1\right)\)

a: \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\ge2\)

b: \(6x-x^2+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left(x-3\right)^2+10\le10\)

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)

3 tháng 2 2017

ý a pạn đưa về dạng ax+b=0 khi chuyển 16 sang và rút gọn 2 biểu thức còn lại đưa về dạng (a+b)2+(a-b)2-16=0. thế thôi. hai biểu thức (x+3)4+(x-2) 4 tự phân tích nhé

hehe

3 tháng 2 2017

thank bạn nha!

19 tháng 8 2017

a, \(A=5x-x^2=-x^2+5x=-x^2+2x\cdot2,5-\dfrac{25}{4}+\dfrac{25}{4}\)

\(=-\left(x-2,5\right)^2+\dfrac{25}{4}\)

Có: \(-\left(x-2,5\right)^2\le0\forall x\)

=> \(-\left(x-2,5\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

''='' xảy ra khi \(x-2,5=0\Rightarrow x=2,5\)

Vậy \(A_{MAX}=\dfrac{25}{4}\Leftrightarrow x=2,5\)

b, \(B=x-x^2=x^2-x=x^2-2\cdot x\cdot\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)

Lập luận như câu a

c, \(C=4x-x^2+3=-x^2+2\cdot x\cdot2-4+7\)

\(=-\left(x-2\right)^2+7\)

\(-\left(x-2\right)^2\le0\forall x\)

=> \(-\left(x-2\right)^2+7\le7\)

Dấu ''='' xảy ra khi và chỉ khi x = 2

Vậy \(C_{MAX}=7\Leftrightarrow x=2\)

19 tháng 8 2017

d, \(D=-x^2+6x-11=-x^2+2\cdot x\cdot3-9-2\)

\(=-\left(x-3\right)^2-2\)

\(-\left(x-3\right)^2\le0\forall x\)

=> \(-\left(x-3\right)^2-2\le-2\)

Dấu ''='' xảy ra khi và chỉ khi x - 3 = 0 => x = 3

Vậy \(D_{MAX}=-2\Leftrightarrow x=3\)

e, \(E=5-8x-x^2=-x^2-8x+5=-x^2-2\cdot x\cdot4-16+21\)

\(=-\left(x+4\right)^2+21\)

Lập luận như trên

f, \(F=4x-x^2+1=-x^2+4x+1=-x^2+2\cdot x\cdot2-4+5\)

\(=-\left(x-2\right)^2+5\)

Tượng tự mấy ý trc