\(Q=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{9}}}}}\) (có 20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

\(Q=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{9}}}}}\)

\(\sqrt{6+\sqrt{9}}=\sqrt{6+3}=\sqrt{9}=3\)

=> \(\sqrt{6+\sqrt{6+\sqrt{9}}}=\sqrt{6+3}=\sqrt{9}=3\)

=> \(\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{9}}}}=\sqrt{6+3}=\sqrt{9}=3\)

...........

=> \(Q=\sqrt{6+\sqrt{6+..........+\sqrt{6+\sqrt{9}}}}=\sqrt{6+3}=\sqrt{9}=3\)

Vậy Q=3

21 tháng 8 2019

@Akai Haruma

11 tháng 8 2017

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0

8 tháng 7 2019

Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi

Gọi biểu thức trên là A

*Chứng minh A > 1/6

Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)

Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)

\(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)

Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)

31 tháng 12 2018

Xét tử : 

\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{64}=3-8=-5\) ( bước này tự hiểu nhé ) 

Xét mẫu : 

\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{4}=6-2=4\) ( bước này cũng tự hiểu -,- ) 

\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}>\frac{-5}{4}>-1\) \(\left(1\right)\)

(Xét 1 lần nữa -,- ) 

Xét tử : 

\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{4}=3-2=1\)

Xét mẫu : 

\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{64}=6-8=-2\)

\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}< \frac{1}{-2}< 0\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(-1< A< 0\)

Vậy A không thể là 1 số nguyên

... 

2 tháng 1 2019

Có cách khác ngắn hơn nha bn!

Đặt:

\(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a>0\)(có 2019 dấu căn)

\(\Rightarrow3+\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2\) (có 2018 dấu căn)

\(\Rightarrow\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2-3\) (có 2018 dấu căn)

Thay vào A,ta đc:

\(A=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{1}{3+a}\)

Do a>0 \(\Rightarrow0< A=\frac{1}{3+a}< 1\)

Vậy : A ko thể là số nguyên

20 tháng 8 2017

Giúp mình với gấp lắm .

26 tháng 6 2016

a/ Ta có: \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}\)

    \(=3-\sqrt{5}+3+\sqrt{5}=6\)

b/ \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

     \(=\sqrt{5}-2-\sqrt{5}-2=-4\)

25 tháng 7 2020

\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\frac{10+4\sqrt{6}}{2}}-\sqrt{\frac{10-4\sqrt{6}}{2}}\)

\(=\sqrt{\frac{6+2.2.\sqrt{6}+4}{2}}-\sqrt{\frac{6-2.2.\sqrt{6}+4}{2}}\)

\(=\frac{\sqrt{\left(\sqrt{6}+2\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{6}-2\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{6}+2\right|-\left|\sqrt{6}-2\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{6}+2-\sqrt{6}+2}{\sqrt{2}}\)

\(=\frac{4}{\sqrt{2}}\)

\(=2\sqrt{2}\)

25 tháng 7 2020

= 3,14626437-0,3178372452

=2,828427125

MIK KO GHI LẠI ĐỀ NHA