K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

P = ( xy + 1 ) ( x2y2 - xyt + 1 )

   = x3y3 + 1

   = \(\left(5.\frac{3}{5}\right)^3+1\)

   = \(27+1\)

    = 28

18 tháng 9 2018

=28

tính r

21 tháng 10 2019

a)

\(A=x^2y-y+xy^2-x\)

\(A=\left(x^2y-x\right)-\left(y-xy^2\right)\)

\(A=x.\left(xy-1\right)-y.\left(1-xy\right)\)

\(A=x.\left(xy-1\right)+y.\left(xy-1\right)\)

\(A=\left(xy-1\right).\left(x+y\right)\)

Thay \(x=-5\)\(y=2\) vào biểu thức A, ta được:

\(A=\left[\left(-5\right).2-1\right].\left[\left(-5\right)+2\right]\)

\(A=\left(-11\right).\left(-3\right)\)

\(A=33.\)

Vậy giá trị của biểu thức A tại \(x=-5\)\(y=2\)\(33.\)

Chúc bạn học tốt!

3 tháng 7 2019

\(1.P=x^2\left(x+y\right)-xy\left(x-y\right)-x\left(y^2+1\right)\)

\(=x^3+x^2y-x^2y+xy^2-xy^2-x\)

\(=x^3-x=1^3-1=0\)

\(2,Q=\left(x-4\right)\left(x-2\right)-\left(x-1\right)\left(x-3\right)\)

\(=x^2-2x-4x+8-\left(x^2-3x-x+4\right)\)

\(=x^2-6x+8-x^2+4x-4\)

\(=-2x+4\)

\(=-2.\frac{7}{4}+4=-\frac{7}{2}+4=\frac{1}{2}\)

3 tháng 7 2019

1. P = x2.(x + y) - xy.(x - y) - x.(y2 + 1)

P = x2.x + x2.y + (-xy).x + (-xy).(-y) + (-x).y2 + (-x).1

P = x3 + x2y - x2y + xy2 - xy2 - x

P = x3 + (x2y - x2y) + (xy2 - xy2) - x

P = x3 - x (1) (dạng này rút gọn cho đẹp) :))

Thay x = 1; y = 2006 vào (1), ta có:

P = x3 - x = 13 - 1

                = 0

Vậy: ????

2. Q = (x - 4)(x - 2) - (x - 1)(x - 3)

Q = x.x + x.(-2) + (-4).x + (-4).(-2) + (-x).x + (-x).(-3) + (-1).x + (-1).(-3)

Q = x2 - 2x - 4x + 8 - x2 + 3x - x + 3

Q = (x2 - x2) + (-2x - 4x + 3x - x) + (8 + 3)

Q = -4x + 11 (1)

x = 1 3/4 = 7/4

Thay x = 7/4 vào (1), ta có:

Q = -4x + 11 = -4.(7/4) + 11

                     = 4

Vậy: ...

Q chả cần phải đổi mà cứ thế thay vào cũng đc

yx=10x=10y

M=\frac{16x^2-40xy}{8x^2-24xy}=\frac{8x\left(2x-5y\right)}{8x\left(x-3y\right)}=\frac{2x-5y}{x-3y}M=8x224xy16x240xy=8x(x3y)8x(2x5y)=x3y2x5y

=\frac{2.10y-5y}{10y-3y}=\frac{15}{7}=10y3y2.10y5y=715
 

Câu 2

9 tháng 4 2016

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

9 tháng 4 2016

1a) x=1, y=1/2, z=0

16 tháng 7 2019

Bài 1:

a) \(\frac{4}{9}x^2-y^2=\left(\frac{2}{3}x-y\right)\left(\frac{2}{3}x+y\right)\)

b) \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

c) \(4x^2+6x+9=\left(2x+2\right)^2+5\)ko hiểu ???

d) \(\frac{1}{9}x^2-\frac{4}{3}xy+4=\left(\frac{1}{3}x\right)^2-2.\frac{1}{3}x.2+2^2=\left(\frac{1}{3}x-2\right)^2\)

16 tháng 7 2019

Bài 2:

a) \(\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right)=\frac{1}{4}x^2-\frac{1}{9}y^2\)

b) \(\left(2x-\frac{1}{3}y\right)\left(4x^2+\frac{2}{3}xy+\frac{1}{9}x^2\right)=8x^3-\frac{1}{27}y^3\)

c) \(\left(3x-5y\right)\left(9x^2+15xy+\frac{1}{9}x^2\right)=27x^3-125y^3\)