\(P=x^{15}-12x^{14}+12x^{13}-12x^{12}+...-12x^2+12x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tại x=11

\(\Rightarrow f\left(x\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-...+\left(x+1\right)x-1\)

\(f\left(x\right)=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-...+x^2+x-1\)

\(f\left(x\right)=x-1\)

\(f\left(x\right)=10\)

2 tháng 4 2018

\(x=11\Leftrightarrow12=x+1\)

\(f\left(x\right)=x^{17}-12x^{16}+12x^{15}-12x^{14}+........+12x-1\)

\(\Leftrightarrow f\left(x\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-.......+\left(x+1\right)x-1\)

\(\Leftrightarrow f\left(x\right)=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-.....+x^2+x-1\)

\(\Leftrightarrow f\left(x\right)=x-1\)

\(x=11\)

\(\Leftrightarrow f\left(11\right)=11-1=10\)

Vậy \(f\left(11\right)=10\)

NV
23 tháng 3 2019

Câu 1:

Với \(x=11\Rightarrow12=x+1\) ta có: \(x^{17}-12x^{16}+12x^{15}-....+12x-1\)

\(=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-\left(x+1\right)x^{14}+...+\left(x+1\right)x-1\)

\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...-x^3-x^2+x^2+x+1\)

\(=x+1\)

\(=12\)

NV
23 tháng 3 2019

Câu 2:

Do \(VT>0\Rightarrow VP>0\Rightarrow x>0\Rightarrow\) tất cả các biểu thức dưới dấu trị tuyệt đối đều dương, phương trình trở thành:

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

\(\Leftrightarrow100x+\frac{1+2+3+...+100}{101}=101x\)

\(\Rightarrow x=\frac{100.101}{2.101}=50\)

Câu 3:

\(A=n^3-n+3\left(n^2-1\right)=n\left(n^2-1\right)+3\left(n^2-1\right)\)

\(A=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Do n lẻ \(\Rightarrow n=2k+1\)

\(\Rightarrow A=\left(2k+4\right).2k.\left(2k+2\right)=8k.\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6

\(\Rightarrow A⋮\left(8.6\right)\Rightarrow A⋮48\)

18 tháng 5 2018

Để \(M=5xy^3+4x^2y^2-12x^3y\\ \) và  \(A=x\left(x^3+12x^2y-5y^3\right)\) ko âm

\(\Rightarrow\)\(M+A\)cũng đồng thời >0

\(\Rightarrow\)\(M+A=\left(5xy^3+4x^2y^2-12x^3y\right)+\left(x^4+12x^3y-5y^3x\right)\)

\(\Rightarrow\)\(M+A=\left(5xy^3-5xy^3\right)-\left(12x^3y-12x^{3y}\right)+\left(x^4+4x^2y^2\right)\)

\(\Rightarrow M+A=x^4+4x^2y^2\)

Mà \(x^4\ge0\) \(;4x^2y^2\ge0\)

\(\Rightarrow\)\(x^4+4x^2y^2\ge0\)

\(\Rightarrow\)\(M+A\ge0\)

24 tháng 4 2021

cho 2012=x+1

B=x2012 - (x+1)x^2010+(x+1)x^2009-...+(x+1)x+1

B=x^2012-x^2012-x^2011+x^2011+x^2010-...+x^2+x+1

B=x+1=2012

28 tháng 4 2017

\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)

Thay x = 11 ta có:

\(A=11^{100}-12.11^{99}+12.11^{98}-...-12.11^3+12.11^2-12.11+12\)

\(=11^{100}-12\left(11^{99}-11^{98}+11^{97}-...+11^3-11^2+11\right)+12\)

Đặt \(B=11^{99}-11^{98}+...+11\)

\(\Rightarrow11B=11^{100}-11^{99}+...+11^2\)

\(\Rightarrow12B=11^{100}+11\)

\(\Rightarrow B=\dfrac{11^{100}+11}{12}\)

Từ đó, \(A=11^{100}-12.\dfrac{11^{100}+11}{12}+12\)

\(=11^{100}-11^{100}-11+12=1\)

Vậy A = 1

29 tháng 4 2017

Ta có: \(x=11\Rightarrow x+1=12\)

Khi đó, ta được:

\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)

\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-\left(x+1\right)x^{97}+...-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+12\)

\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-x^{98}-x^{97}+...-x^4-x^3+x^3+x^2-x^2-x+12\)

\(=\left(x^{100}-x^{100}\right)-\left(x^{99}-x^{99}\right)+\left(x^{98}-x^{98}\right)-...-\left(x^3-x^3\right)+\left(x^2-x^2\right)-x+12\)

\(=0-x+12=0-11+12=-11+12=1\)

Vậy tại x=11 thì A=1

24 tháng 4 2019

a)Đang suy nghĩ...

b)\(M\left(x\right)=\left(x^2-3x\right)+\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

24 tháng 4 2019

a) \(12x^{11}-15x^7-6x^5+2018\)

\(=3x^5.\left(4x^6-5x^2-2\right)+2018\)

\(=3x^5.0+2018\)

\(=2018\)