Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)
\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)
\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)
b) ta có: M=3x.(x-y) chia hết cho 11
N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11
=> M-N chia hết cho 11 (đpcm)
Giải:
\(\dfrac{x}{y}=\dfrac{11}{3}\Rightarrow\dfrac{x}{11}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{11}=\dfrac{y}{3}=k\) \(\Rightarrow x=11k;y=3k\)
Thay \(x=11k;y=3k\) vào \(M\) ta có:
\(M=\dfrac{3x-5y}{2x-y}=\dfrac{3.11k-5.3k}{2.11k-3k}\)
\(=\dfrac{33k-15k}{22k-3k}=\dfrac{\left(33-15\right)k}{\left(22-3\right)k}\)
\(=\dfrac{18k}{19k}=\dfrac{18}{19}\)
Vậy \(M=\dfrac{18}{19}\)
Bài giải
Vì \(\dfrac{x}{y}=\dfrac{11}{3}\Rightarrow\dfrac{x}{11}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{11}=\dfrac{y}{3}=k\Rightarrow x=11k;y=3k\)
Ta có : M = \(\dfrac{3x-5y}{2x-y}=\dfrac{3.11k-5.3k}{2.11k-3k}=\dfrac{33k-15k}{22k-3k}=\dfrac{\left(33-15\right).k}{\left(22-3\right).k}=\dfrac{18k}{19k}=\dfrac{18}{19}.\)Vậy \(M=\dfrac{18}{19}\)
Ta có: \(\dfrac{x}{y}=\dfrac{11}{3}\Rightarrow\dfrac{x}{11}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{11}=\dfrac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=11k\\y=3k\end{matrix}\right.\)
\(M=\dfrac{3x-5y}{2x-y}=\dfrac{33k-15k}{22k-3k}=\dfrac{18k}{19k}=\dfrac{18}{19}\)
Vậy \(M=\dfrac{18}{19}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
đk: \(y\ne0\)
\(\frac{2x-y}{y}=\frac{3}{4}\Leftrightarrow\frac{2x}{y}-1=\frac{3}{4}\Leftrightarrow\frac{2x}{y}=\frac{7}{4}\Leftrightarrow x=\frac{7}{8}y\)
\(A=\frac{3x+4y}{5y}=\frac{3\cdot\frac{7}{8}y+4y}{5y}=\frac{y\cdot\left(\frac{21}{8}+4\right)}{5y}=\frac{21+32}{40}=\frac{53}{40}\)
\(a.3x-5y+1=3.\dfrac{1}{3}-5.\left(-\dfrac{1}{5}\right)+1=1+1+1=3\)
b.x=1
\(\Rightarrow3.1^2-2.1-5=-4\)
x=-1
\(\Rightarrow3.\left(-1\right)^2-2.\left(-1\right)-5=3+2-5=0\)
ta có x/y =11/3 suy ra x=11y/3
thay vào N ta được
N=(11y-5y)/(22y/3-y)=18/19
1/
\(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{4x}{12}=\frac{5y}{20}=\frac{4x-5y}{-8}\) (1)
\(\frac{x}{3}=\frac{y}{4}=\frac{3x}{9}=\frac{4y}{16}=\frac{3x+4y}{25}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{4x-5y}{-8}=\frac{3x+4y}{25}\Rightarrow\frac{4x-5y}{3x+4y}=\frac{-8}{25}\)
2/
\(M-N=3x\left(x-y\right)-\left(y-x\right)\left(y+x\right)=\)
\(=3x\left(x-y\right)+\left(x-y\right)\left(y+x\right)=\left(x-y\right)\left(4x+y\right)\)
Mà \(x-y\) chia hết cho 11 nên \(M-N\) chia hết cho 11
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
đặt k đi bạn
x/y=11/3=11k/3k
thay vào rồi tính M
Vì \(\frac{x}{y}=\frac{11}{3}\Rightarrow\frac{x}{11}=\frac{y}{3}\)
Đặt \(\frac{x}{11}=\frac{y}{3}=k\Rightarrow x=11k;y=3k\)
Ta có: \(M=\frac{3x-5y}{2x-y}=\frac{3.11k-5.3k}{2.11k-3k}=\frac{33k-15k}{22k-3k}=\frac{\left(33-15\right).k}{\left(22-3\right).k}=\frac{18k}{19k}=\frac{18}{19}\)
Vậy M=18/19