Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)
\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)
\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)
b) ta có: M=3x.(x-y) chia hết cho 11
N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11
=> M-N chia hết cho 11 (đpcm)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
đk: \(y\ne0\)
\(\frac{2x-y}{y}=\frac{3}{4}\Leftrightarrow\frac{2x}{y}-1=\frac{3}{4}\Leftrightarrow\frac{2x}{y}=\frac{7}{4}\Leftrightarrow x=\frac{7}{8}y\)
\(A=\frac{3x+4y}{5y}=\frac{3\cdot\frac{7}{8}y+4y}{5y}=\frac{y\cdot\left(\frac{21}{8}+4\right)}{5y}=\frac{21+32}{40}=\frac{53}{40}\)
1/
\(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{4x}{12}=\frac{5y}{20}=\frac{4x-5y}{-8}\) (1)
\(\frac{x}{3}=\frac{y}{4}=\frac{3x}{9}=\frac{4y}{16}=\frac{3x+4y}{25}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{4x-5y}{-8}=\frac{3x+4y}{25}\Rightarrow\frac{4x-5y}{3x+4y}=\frac{-8}{25}\)
2/
\(M-N=3x\left(x-y\right)-\left(y-x\right)\left(y+x\right)=\)
\(=3x\left(x-y\right)+\left(x-y\right)\left(y+x\right)=\left(x-y\right)\left(4x+y\right)\)
Mà \(x-y\) chia hết cho 11 nên \(M-N\) chia hết cho 11
Bài 1 : Ta có : \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Đặt : \(x=3k;y=4k\)
hay \(D=\frac{12k-20k}{9k+16k}=\frac{-8k}{25k}=\frac{-8}{25}\)
Bài 2 :
a, ta có : \(\left|2x-1\right|=\frac{3}{2}\)
TH1 : \(2x-1=\frac{3}{2}\Leftrightarrow2x=\frac{5}{2}\Leftrightarrow x=\frac{5}{4}\)
TH2 : \(2x-1=-\frac{3}{2}\Leftrightarrow2x=-\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\)
* Với x = 5/4 ta được : \(C=4.\frac{5}{4}+3=8\)
* Với x = -1/4 ta được : \(C=4.\left(-\frac{1}{4}\right)+3=2\)
b, Ta có C = -5/2 hay \(4x+3=-\frac{5}{2}\Leftrightarrow4x=-\frac{11}{2}\Leftrightarrow x=-\frac{11}{8}\)
Vậy với x = -11/8 thì C = -5/2
\(\frac{x}{y}=\frac{3}{4}\Leftrightarrow4x=3y\)
\(D=\frac{4\left(4x-5y\right)}{4\left(3x+4y\right)}=\frac{4.4x-20y}{3.4x+16y}=\frac{4.3y-20y}{3.3y+16y}=\frac{-8y}{25y}=\frac{-8}{25}\)
\(B=\frac{4x-9}{3x+y}-\frac{4y+9}{3y+x}\)
\(\Rightarrow B=\frac{4x-\left(x-y\right)}{3x+y}-\frac{4y+x-y}{3y+x}\)
\(\Rightarrow B=\frac{4x-x+y}{3x+y}-\frac{4y+x-y}{3y+x}\)
\(\Rightarrow B=\frac{3x+y}{3x+y}-\frac{3y+x}{3y+x}=1-1=0\)
Thay 9 = x - y vào biểu thức B , ta được :
\(B=\frac{4x-\left(x-y\right)}{3x+y}-\frac{4y+\left(x-y\right)}{3y+x}=\frac{3x+y}{3x+y}-\frac{3y+x}{3y+x}=1-1=0\)
Vậy ...
Vì \(\frac{x}{y}=\frac{11}{3}\Rightarrow\frac{x}{11}=\frac{y}{3}\)
Đặt \(\frac{x}{11}=\frac{y}{3}=k\Rightarrow x=11k;y=3k\)
Ta có: \(M=\frac{3x-5y}{2x-y}=\frac{3.11k-5.3k}{2.11k-3k}=\frac{33k-15k}{22k-3k}=\frac{\left(33-15\right).k}{\left(22-3\right).k}=\frac{18k}{19k}=\frac{18}{19}\)
Vậy M=18/19
D=4\(\times\)3-5\(\times\)4/3\(\times\)3+4\(\times\)4=\(\frac{-8}{25}\)
Answer:
\(\frac{x}{y}=\frac{3}{4}\)
\(\Rightarrow k\left(k\ne0\right)=\frac{x}{3}=\frac{y}{4}\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
\(\Rightarrow D=\frac{4.3k-5.4k}{3.3k+4.4k}=-\frac{8}{25}\)