Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{\left(a-b\right)^4}{\left(c-d\right)^4}=\left(\frac{a-b}{c-d}\right)^4\left(1\right)\)
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\left(đpcm\right)\)
đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\left(\frac{b\left(t-1\right)}{d\left(t-1\right)}\right)^4=\left(\frac{b}{d}\right)^4=\frac{a^4+b^4}{c^4+d^4}=\frac{b^4\left(t+1\right)}{d^4\left(t+1\right)}=\left(\frac{b}{d}\right)^4\)
\(D=\frac{4}{21}+\frac{4}{77}+\frac{4}{165}+\frac{4}{285}+\frac{4}{437}+\frac{4}{621}\)
\(D=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(D=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\)
\(D=\frac{1}{3}-\frac{1}{27}\)
\(D=\frac{9}{27}-\frac{1}{27}\)
\(D=\frac{8}{27}\)
\(D=\frac{4}{21}+\frac{4}{77}+\frac{4}{165}+\frac{4}{285}+\frac{4}{437}+\frac{4}{621}\)
\(D=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(D=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\)
\(D=\frac{1}{3}-\frac{1}{27}\)
\(D=\frac{8}{27}\)
_Chúc bạn học tốt_
\(D=\dfrac{4}{8\cdot13}+\dfrac{4}{13\cdot18}+\dfrac{4}{18\cdot23}+...+\dfrac{4}{253\cdot258}\\ =\dfrac{4}{5}\cdot\dfrac{5}{8\cdot13}+\dfrac{4}{5}\cdot\dfrac{5}{13\cdot18}+\dfrac{4}{5}\cdot\dfrac{5}{18\cdot23}+...+\dfrac{4}{5}\cdot\dfrac{5}{253\cdot258}\\ =\dfrac{4}{5}\left(\dfrac{5}{8\cdot13}+\dfrac{5}{13\cdot18}+\dfrac{5}{18\cdot23}+...+\dfrac{5}{253\cdot258}\right)\\ =\dfrac{4}{5}\cdot\left(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{23}+...+\dfrac{1}{253}-\dfrac{1}{258}\right)\\ =\dfrac{4}{5}\cdot\left(\dfrac{1}{8}-\dfrac{1}{258}\right)\\ =\dfrac{4}{5}\cdot\dfrac{125}{1032}\\ =\dfrac{25}{258}\)
ta có
Tính:
\(\dfrac{4}{8.13}+\dfrac{4}{13.18}+....+\dfrac{4}{253.258}\)
= 4 (\(\dfrac{1}{8.13}+\dfrac{1}{13.18}+.....+\dfrac{1}{253.258}\))
=\(\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+...+\dfrac{1}{253}-\dfrac{1}{258}\right)\)
=\(\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{258}\right)\)
=\(\dfrac{25}{258}\)
D=1-42+44-46+...+4100
16D=42-44+46-48+...+4102
16D+D=42-44+46-48+...+4102+1-42+44-46+4100
17D=4102+1
D=(4102+1):17
\(D=4-4^2+4^3-4^4+...+4^{2024}\\ 4D=4^2-4^3+4^4-4^5+...+4^{2025}\\ 4D+D=\left(4^2-4^3+4^4-4^5+...+4^{2025}\right)+\left(4-4^2+4^3-4^4+...+4^{2024}\right)\\ 5D=4^{2025}+4\\ D=\dfrac{4^{2025}+4}{5}\)